[1] Pittman T B, Shih Y H, Strekalov D V, et al. Optical imaging by means of two-photon quantum entanglement [J]. Physical Review A, 1995, 52(5): R3429. doi:  10.1103/PhysRevA.52.R3429
[2] Bennink R S, Bentley S J, Boyd R W. “Two-photon” coincidence imaging with a classical source [J]. Physical Review Letters, 2002, 89(11): 113601. doi:  10.1103/PhysRevLett.89.113601
[3] Ferri F, Magatti D, Sala V G, et al. Longitudinal coherence in thermal ghost imaging [J]. Applied Physics Letters, 2008, 92(26): 261109. doi:  10.1063/1.2945642
[4] Shapiro J H. Computational ghost imaging [J]. Physical Review A, 2008, 78(6): 061802. doi:  10.1103/PhysRevA.78.061802
[5] Bromberg Y, Katz O, Silberberg Y. Ghost imaging with a single detector [J]. Physical Review A, 2009, 79(5): 053840. doi:  10.1103/PhysRevA.79.053840
[6] Katz O, Bromberg Y, Silberberg Y. Compressive ghost imaging [J]. Applied Physics Letters, 2009, 95(13): 131110. doi:  10.1063/1.3238296
[7] Ferri F, Magatti D, Lugiato L A, et al. Differential ghost imaging [J]. Physical Review Letters, 2010, 104(25): 253603. doi:  10.1103/PhysRevLett.104.253603
[8] Sun M J, Zhang J M. Single-pixel imaging and its application in three-dimensional reconstruction: a brief review [J]. Sensors, 2019, 19(3): 732. doi:  10.3390/s19030732
[9] Sun B, Edgar M P, Bowman R, et al. 3D computational imaging with single-pixel detectors [J]. Science, 2013, 340(6134): 844−847. doi:  10.1126/science.1234454
[10] Bian L, Suo J, Situ G, et al. Multispectral imaging using a single bucket detector [J]. Scientific Reports, 2016, 6: 24752. doi:  10.1038/srep24752
[11] Studer V, Bobin J, Chahid M, et al. Compressive fluorescence microscopy for biological and hyperspectral imaging [J]. Proceedings of the National Academy of Sciences, 2012, 109(26): E1679−E1687. doi:  10.1073/pnas.1119511109
[12] Gibson G M, Sun B, Edgar M P, et al. Real-time imaging of methane gas leaks using a single-pixel camera [J]. Optics Express, 2017, 25(4): 2998−3005. doi:  10.1364/OE.25.002998
[13] Zhao C, Gong W, Chen M, et al. Ghost imaging lidar via sparsity constraints [J]. Applied Physics Letters, 2012, 101(14): 141123. doi:  10.1063/1.4757874
[14] Li E, Bo Z, Chen M, et al. Ghost imaging of a moving target with an unknown constant speed [J]. Applied Physics Letters, 2014, 104(25): 251120. doi:  10.1063/1.4885764
[15] Gong W, Zhao C, Yu H, et al. Three-dimensional ghost imaging lidar via sparsity constraint [J]. Scientific Reports, 2016, 6: 26133. doi:  10.1038/srep26133
[16] Sun M J, Edgar M P, Gibson G M, et al. Single-pixel three-dimensional imaging with time-based depth resolution [J]. Nature Communications, 2016, 7(1): 1−6.
[17] Chen W, Chen X. Object authentication in computational ghost imaging with the realizations less than 5% of Nyquist limit [J]. Optics Letters, 2013, 38(4): 546−548. doi:  10.1364/OL.38.000546
[18] Wu J, Haobogedewude B, Liu Z, et al. Optical secure image verification system based on ghost imaging [J]. Optics Communications, 2017, 399: 98−103. doi:  10.1016/j.optcom.2017.04.042
[19] Chen H, Shi J, Liu X, et al. Single-pixel non-imaging object recognition by means of Fourier spectrum acquisition [J]. Optics Communications, 2018, 413: 269−275. doi:  10.1016/j.optcom.2017.12.047
[20] Ota S, Horisaki R, Kawamura Y, et al. Ghost cytometry [J]. Science, 2018, 360(6394): 1246−1251. doi:  10.1126/science.aan0096
[21] Jiao S, Feng J, Gao Y, et al. Optical machine learning with incoherent light and a single-pixel detector [J]. Optics Letters, 2019, 44(21): 5186−5189. doi:  10.1364/OL.44.005186
[22] Zhang Z, Li X, Yao M, et al. Image-free real-time classification of fast moving objects using learned spatial light modulation and a single-pixel detector[J]. arXiv preprint arXiv: 1912.01974, 2019.
[23] Nascimento G, Laranjeira C, Braz V, et al. A robust indoor scene recognition method based on sparse representation[C]//Iberoamerican Congress on Pattern Recognition. Springer, Cham, 2017: 408-415.
[24] Zhang W, Li C, Peng G, et al. A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load [J]. Mechanical Systems and Signal Processing, 2018, 100: 439−453. doi:  10.1016/j.ymssp.2017.06.022
[25] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv: 1409.1556, 2014.
[26] Du J. Research of anti-noise and energy-efficient deep neural networks for spontaneous facial expression recognition[D]. Guangzhou: Guangdong University of Technology, 2019. (in Chinese)
[27] Zhang X, Liu W. Research on SAR target recognition based on convolutional neural networks [J]. Electronic Measurement Technology, 2018, 41(14): 92−96. (in Chinese)
[28] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778.
[29] Jiang S. Classification and description of fundus images based on ResNet[D]. Yantai: Shandong Technology and Business University, 2019. (in Chinese)
[30] Tang K, He Q, Zhao Q, Wang X. Image recognition based on improved deep neural network [J]. Journal of Nanjing Normal University (Natural Science Edition), 2019, 42(3): 115−121. (in Chinese)
[31] Wu K, Bai M. Study on recognition algorithm for plaque in coronary CTA on the basis of deep residual network [J]. China Medical Equipment, 2019, 16(11): 1−5. (in Chinese)
[32] He K, Zhang X, Ren S, et al. Identity mappings in deep residual networks[C]//European Conference on Computer Vision. Springer, Cham, 2016: 630-645.