[1] Shi Tu, Yang Yongying, Zhang Lei, et al. Surface testing methods of aspheric optical elements [J]. Chinese Optics, 2014, 7(1): 26-46. (in Chinese)
[2] Zhang Xiaobing. Review on manufacture and measurement method of aspheric surface optical part [J]. Ordnance Material Science and Engineering, 2014, 37(2): 106-111. (in Chinese) doi:  10.14024/j.cnki.1004-244x.2014.02.039
[3] 王洪臣. 二次旋转曲面法线等距离线加工法及机床研制[D]. 长春理工大学, 2007.

Wang Hongchen. Development machine of tool and machining method for rotated conicoid using normal equidistance method [D]. Changchun: Changchun University of Technology, 2007. (in Chinese)
[4] Liang Zijian, Yang Yongying, Zhao Hongyang, et al. Advances in research and applications of optical aspheric surface metrology [J]. Chinese Optics, 2022, 15(2): 161-186. (in Chinese) doi:  10.37188/CO.2021-0143
[5] 舒朝濂. 现代光学制造技术[M]. 北京: 国防工业出版社, 2008.

Shu Chaolian. Modern Optical Manufacturing Technology [M]. Beijing: National Defense Industry Press, 2008. (in Chinese)
[6] Li Chijuan, Sun Changfeng, Xi Zhe, et al. Application of optical aspheric element [J]. Laser and Infrared, 2013, 43(3): 244-247. (in Chinese) doi:  10.3969/j.issn.1001-5078.2013.03.003
[7] Li Shuping, Zhang Yu. Application of single point diamond turning in infrared optics[C]//Proceedings of the 2016 International Symposium on Advances In Electrical, Electronics And Computer Engineering, 2016.
[8] Luo Chi, Shi Feng, Tian Ye, et al. A combination process of magnetorheological finishing and computer controlled optical surfacing on single-crystal silicon surface[C]//International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT), 2019.
[9] Karabyn V, Polák J, Procháska F, et al. Ion beam figuring with using Einzel lens[C]//Optics and Measurement 2019 Inter-national Conference, 2019, 11385: 1138508.
[10] Liao Wenlin, Dai Yifan, Nie Xuqing, et al. Rapid fabrication technique for nanometer-precision aspherical surfaces [J]. Applied Optics, 2015, 54(7): 1629-1638. doi:  1364/AO.54.001629
[11] 孙丹丹. 精密表面缺陷特性及光学显微散射成像系统的研究[D]. 浙江大学, 2006.

Sun Dandan. Study on the characteristics of precise surface defects and optical micro scattering imaging system[D]. Hangzhou: Zhejiang University, 2006. (in Chinese)
[12] Xiang Yichuan, Lin Youxi, Ren Zhiying. Study on surface defect detection method of optical element [J]. Optical Instruments, 2018, 40(1): 78-87. (in Chinese)
[13] Wang Hongxiang, Shen Lu, Li Chengfu, et al. Analysis and experimental investigation of laser induced damage of optics [J]. Chinese Journal of Lasers, 2017, 44(3): 0302006. (in Chinese) doi:  10.3788/CJL201744.0302006
[14] You Kewei, Zhang Yanli, Zhang Xuejie, et al. Influence of relative position of optical component surface defects on near field beam quality [J]. Chinese Journal of Lasers, 2015, 42(3): 0308004. (in Chinese) doi:  10.3788/CJL201542.0308004
[15] Ren Bingqiang, Huang Huijie, Zhang Weixin, et al. Online inspection apparatus and experiments on optics damage [J]. High Power Laser and Particle Beams, 2004, 16(4): 465-468. (in Chinese)
[16] Rainer F. Mapping and inspection of damage and artifacts in large-scale optics[C]//Proceedings of SPIE, Laser Damage, 1998, 3244: 272-281.
[17] 陈竹. 基于数字全息术的光学元件表面疵病三维形貌测量技术研究[D]. 中国工程物理研究院, 2017.

Chen Zhu. Research on three-dimensional topography measure-ment of optical element surface defects based on digital holography [D]. Mianyang: Academy of Engineering Physics, 2017. (in Chinese)
[18] 楚红雨. 基于机器视觉的高功率激光装置光学元件表面缺陷检测技术研究[D]. 重庆: 重庆大学, 2011.

Chu Hongyu. Research on surface defect detection technology of high power laser device based on machine vision [D]. Chongqing: Chongqing University, 2011. (in Chinese)
[19] 中国机械工业联合会. GB 1185—1989 光学零件表面疵病[S]. 北京: 中国标准出版社, 1989.
[20] MIL-0-13830 A/B 光学零件表面疵病标准[S]. 美国国防部标准化局, 1994.
[21] Dimitrios Kosmopoulos, Theodora Varvarigou. Automated inspection of gaps on the automobile production line through stereo vision and specular reflection [J]. Computers in Industry, 2001, 46(1): 49-63. doi:  https://doi.org/10.1016/S0166-3615(01)00113-0
[22] International Standard Organization. ISO 10110-7: 2008(E), Optics and photonics preparation of drawings for optical elements and systems Part 7: Surface imperfection tolerances [S]. Geneva: International Standard Organization, 2008.
[23] 中国国家标准化管理委员会. GB/T 1185—2006, 光学零件表面疵病[S]. 北京: 中国标准出版社, 2007.
[24] U. S. Army. MIL-PRF-13830 B Optical components for fire control instruments; General specification governing the manufacture, assembly, and inspection of [S]. U. S. Army, 1997.
[25] 王丽荣. 美国军用规范 MIL-PRF-13830 B 表面疵病要求详解[J]. 硅谷, 2012(4): 181-182,193.
[26] Aikens D M, Bissinger H D. Overview of small optics for the National Ignition Facility [C]//Proceedings of SPIE, 1999, 3782: 476-487.
[27] 肖冰. 大口径光学元件表面疵病自动化检测系统关键问题讨论与研究[D]. 浙江大学, 2010.

Xiao Bing. Discussion and research on key problems of automatic inspection system for surface defects of large aperture optical elements [D]. Hangzhou: Zhejiang University, 2010. (in Chinese)
[28] 米曾真. 基于数字图像处理技术的光学元件表面缺陷检测与分析[D]. 重庆大学, 2009.

Mi Zengzhen. Surface defect detection and analysis of optical elements based on digital image processing technology [D]. Chongqing: Chongqing University, 2011. (in Chinese)
[29] Preston F W. The structure of abraded glass surfaces [J]. Transactions of the Optical Society, 1922, 23(3): 141-164. doi:  10.1088/1475-4878/23/3/301
[30] Wang Yuanqing. Measurement of surface flaw by grazing incidence [J]. Applied Laser, 1998, 18(2): 55-58. (in Chinese)
[31] Deng Shitao, Li Xiaotong, Cen Zhaofeng, et al. Paraxial calculation and analysis of ghosts in Shenguang III prototype device [J]. Opto-Electronic Engineering, 2004, 31(9): 10-13. (in Chinese)
[32] 李东明. 神光Ⅲ远场诊断系统光学设计及关键技术研究[D]. 浙江大学, 2004.

Li Dongming. Optical design and key technology research of Shenguang Ⅲ far field diagnosis system [D]. Hangzhou: Zhejiang University, 2004. (in Chinese)
[33] 何志平. 激光多程放大系统杂散光分析[D]. 浙江大学, 2003

He Zhiping. Stray light analysis of laser multipass ampli-fication system[D]. Hangzhou: Zhejiang University, 2003. (in Chinese)
[34] 曹频. 球面光学元件表面疵病评价系统中关键技术研究[D]. 浙江大学, 2015.

Cao Pin. Research on key technologies in surface defect evaluation system of spherical optical elements [D]. Hangzhou: Zhejiang University, 2015. (in Chinese)
[35] Tao Xian, Hou Wei, Xu De. A survey of surface defect detection methods based on deep learning [J]. Acta Automatica Sinica, 2021, 47(5): 1017-1034. (in Chinese) doi:  10.16383/j.aas.c190811
[36] Wang Dong, Li Wanyi, Sun Jia, et al. Research of small parts’ surface defects inspection based on machine vision [J]. Applied Science And Technology, 2018, 45(4): 131-136. (in Chinese) doi:  10.11991/yykj.201802005
[37] 陶显, 张正涛, 张峰, 等. 基于机器视觉的大口径光学元件表面损伤检测技术研究进展[C]//第三十三届中国控制会议论文集(B卷), 2014: 1244-1249.
[38] Shi Yali, Tao Xian, Zhou Xinda, et al. An online laser-induced flaw inspection device for optical elements [J]. Infrared and Laser Engineering, 2018, 47(4): 0417003. (in Chinese) doi:  10.3788/IRLA201847.0417003
[39] Hou Xi, Wu Fan, Yang Li, et al. Layout model and analysis of annular subaperture stitching technique for testing large aspheric mirror [J]. Optics and Precision Engineering, 2006, 14(2): 207-212. (in Chinese) doi:  10.3321/j.issn:1004-924X.2006.02.012
[40] Zhang Yaoping, Zhang Yundong, Ling Ning, et al. Study on the influence of substance temperature on the defect and optical performance of single YbF3 films [J]. Optical Instruments, 2006, 28(1): 93-96. (in Chinese) doi:  10.3969/j.issn.1005-5630.2006.01.020
[41] Zhang Wenxue, Wang Jihong, Ren Ge. Optical system design for on-line defects detection of optical components [J]. Journal of Applied Optics, 2019, 40(5): 779-785. (in Chinese) doi:  10.5768/JAO201940.0501010
[42] 张文学. 光学元件缺陷在线检测技术研究[D]. 中国科学院大学(中国科学院光电技术研究所), 2020.

Zhang Wenxue. Research on on-line detection technology of optical element defects [D]. Chengdu: University of Chinese Academy of Sciences (Institute of Optics and Electronics, Chinese Academy of Sciences), 2020. (in Chinese)
[43] Zhao Yuan’an, Shao Jianda, Liu Xiaofeng, et al. Tracking and understanding laser damage events in optics [J]. High Power Laser and Particle Beams, 2022, 34(1): 61-72. (in Chinese) doi:  10.11884/HPLPB202234.210331
[44] 邵建达, 刘世杰, 董敬涛, 等. 高速激光线扫描的表面缺陷检测装置: 中国, 201610943020.1[P]. 2017-02-22.
[45] Zhang Heng, Li Sikun, Wang Xiangchao, et al. 3D rigorous simulation of defective masks used for euv lithography via machine learning-based calibration [J]. Acta Optica Sinica, 2018, 38(12): 1222002. (in Chinese) doi:  10.3788/AOS201838.1222002
[46] 马天娇. 基于机器视觉的缺陷检测与识别方法研究[D]. 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2018.

Ma Tianjiao. Research on defect detection and recognition methods based on machine vision [D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Precision Mechanics and Physics, Chinese Academy of Sciences), 2018. (in Chinese)
[47] 杨荟琦. 大口径球面/非球面疵病检测仪结构设计及实验研究[D]. 中国科学院长春光学精密机械与物理研究所, 2017.

Yang Huiqi. Structural design and experimental research of large aperture spherical/aspheric defect detector [D]. Changchun: Changchun Institute of Optics, Precision Mechanics and Physics, Chinese Academy of Sciences, 2017. (in Chinese)
[48] Yang Huiqi, Li Xianling. Accuracy modeling and prediction of optical element surface defect detector [J]. Machinery Design and Manufacture, 2018(6): 98-101. (in Chinese) doi:  10.3969/j.issn.1001-3997.2018.06.026
[49] 陈雪. 大口径高精度光学元件疵病检测关键技术研究[D]. 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2020.

Chen Xue. Research on key technologies for defect detection of large caliber and high precision optical components [D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Precision Mechanics and Physics, Chinese Academy of Sciences), 2020. (in Chinese)
[50] He Xiang, Xie Lei, Zhao Heng, et al. Characterization of polishing induced subsurface damages in fused silica optics [J]. High Power Laser and Particle Beams, 2016, 28(10): 151108. (in Chinese) doi:  10.11884/HPLPB201628.151108
[51] Pu Yunti, Wang Gang, Qiao Zhao, et al. Damage mechanisms of optical glass with gold nano-defects under laser irradiation [J]. Infrared and Laser Engineering, 2015, 44(11): 3229-3233. (in Chinese) doi:  10.3969/j.issn.1007-2276.2015.11.011
[52] 合肥知常光电科技有限公司. 自动光学表面检测系统[EB/OL]. [2020-04-20]. http://www.zc-hightech.com/prodetail/14.
[53] 杭州晶耐科光电技术有限公司. 小型表面疵病数字化检测仪[EB/OL]. [2020-04-20]. https://www.china.cn/qtzhuanyongyiqiyib/3373780407.html.
[54] 杭州晶耐科光电技术有限公司. 大口径表面疵病检测仪[EB/OL]. [2020-04-20]. https://zernikeoptics.cn.china.cn/supply/3373791501.html.
[55] 杭州晶耐科光电技术有限公司. 中型表面疵病数字化检测仪[EB/OL]. [2020-04-20]. https://Zernike optics.cn.china.cn/supply/3373787172.html.
[56] Lu Min, Wang Zhile, Gao Pingping, et al. Defect detection and current situation of optical components [J]. Optical Instruments, 2020, 42(3): 88-94. (in Chinese)
[57] Langer G, Langer A, Buchegger B, et al. Frequency domain optical resolution photoacoustic and fluorescence microscopy using a modulated laser diode[C]//Proceedings of SPIE, BiOS, 2017, 10064: 1006426.
[58] Tang Ruyu, Liu De’an, Zhu Jianqiang. Micro-size damage adaptive detection technology based on local signal-to-noise ratio [J]. Chinese Journal of Lasers, 2018, 45(7): 0704001. (in Chinese) doi:  10.3788/CJL201845.0704001
[59] 尹朝阳. 非球面光学元件表面微缺陷的自动化检测及修复系统研究[D]. 哈尔滨工业大学, 2020.

Yin Chaoyang. Research on automatic detection and repair system of surface micro defects of aspheric optical elements [D]. Harbin: Harbin Institute of Technology, 2020. (in Chinese)
[60] Tian Xianghui, Song Dazhao, He Xueqiu, et al. Surface microtopography and micromechanics of various rank coals [J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(11): 1351-1363.
[61] Han Zhiguo, Li Suoyin, Feng Yanan, et al. Development of contact profilometer probe status inspection graphic sample block [J]. Micronanoelectronic Technology, 2019, 56(9): 761-765. (in Chinese) doi:  10.13250/j.cnki.wndz.2019.09.012
[62] Bao Zhenwu, Liu Jianfei, Huo Hongtao, et al. Theory and experiments about optical stylus method [J]. Acta Optica Sinica, 1999, 19(11): 1523-1529. (in Chinese) doi:  10.3321/j.issn:0253-2239.1999.11.015
[63] Sun Junqing, Qiu Daoyuan. Theory and experiment of optical fiber probe profilemeter [J]. Journal of University of Electronic Science and Technology of China, 2003, 32(1): 35-38. (in Chinese) doi:  10.3969/j.issn.1001-0548.2003.01.009
[64] Zhu Jie, Sun Runguang. Introduction to atomic force microscope and its manipulation [J]. Life Science Instruments, 2005, 3(1): 22-26. (in Chinese) doi:  10.3969/j.issn.1671-7929.2005.01.006
[65] Qian Jianqiang, Gao Song, Yu Jin, et al. Laser atomic force microscopy and its observation on the surface of optical materials [J]. Journal of Chinese Electron Microscopy Society, 1993(2): 198. (in Chinese)
[66] Qian Jianqiang, Yu Jin, Gao Song, et al. Laser atomic force microscope and its study on optical surface roughness [J]. Journal of Chinese Electron Microscopy Society, 1993(2): 200. (in Chinese)
[67] Li Jianbai, Li Dacheng, Li Xiaoyun, et al. Study on measuring the micro profile of optical super smooth surface by atomic force microscope [J]. Acta Optica Sinica, 2000, 20(11): 1533-1537. (in Chinese) doi:  10.3321/j.issn:0253-2239.2000.11.018
[68] Caber P J. Interferometric profiler for rough surfaces [J]. Applied Optics, 1993, 32(19): 3438-3441. doi:  10.1364/AO.32.003438
[69] Li Xiaozhou, Yu Huadong, Yu Zhanjiang, et al. Optical inspection method for surface defects of micro-components [J]. Acta Armamentarii, 2011, 32(7): 872-877. (in Chinese)
[70] Zhang Hongliang, Wang Qin. Interferometer and its application in optical detection [J]. Science and Technology Information, 2007(1): 79, 114. (in Chinese)
[71] Liu Chen, Lu Rongsheng, Chen Lei, et al. Research progress of surface roughness measurement based on optical method [J]. Semiconductor Optoelectronics, 2010, 31(4): 495-500. (in Chinese) doi:  10.16818/j.issn1001-5868.2010.04.002
[72] Chi Guichun, Zhou Zhaofei, Zhou Weidong. Development of laser interference profilometry [J]. Modern Scientific Instruments, 1996(4): 33-35. (in Chinese)
[73] Wang Xuanyang, Chen Guang. Detection and control of surface defects of ultra smooth optical elements [J]. Optics and Optoelectronic Technology, 2018, 16(4): 52-57. (in Chinese) doi:  10.19519/j.cnki.1672-3392.2018.04.009
[74] Hao Qun, Ning Yan, Hu Yao. Interferometric testing of aspheric surface [J]. Metrology and Measurement Technology, 2018, 38(1): 1-8. (in Chinese) doi:  10.11823/j.issn.1674-5795.2018.01.01
[75] Yang Yongying, Zhuo Yongmo, Xu Min. The system on real-time scanning and data treating of the double focus laser interference spherical profilometer [J]. Optical Instruments, 1994(z1): 26-33. (in Chinese)
[76] Yang Yongying, Zhuo Yongmo, Xu Min. Laser double focus interference spherical micro profilometer [J]. Modern Scientific Instruments, 1995(4): 36-38, 40. (in Chinese)
[77] You Zheng, Li Zhu. A non-contact light heterodyne profilometer [J]. Journal of Astronautic Metrology and Measurement, 1992(4): 17-21. (in Chinese)
[78] Oh Jeong Seok, Kim Seung-Woo. Femtosecond laser pulses for surface-profile metrology [J]. Optics Letters, 2005, 30(19): 2650-2652.
[79] Deck L, de Groot P. High-speed noncontact profiler based on scanning white-light interferometry [J]. Applied Optics, 1994, 33(31): 7334-7338.
[80] David Grigg, Eric Felkel, John Roth, et al. Static and dynamic characterization of MEMS and MOEMS devices using optical interference microscopy[C]//Proceedings of SPIE, 2004, 5455: 429-435.
[81] Dai Rong, Xie Tiebang, Chang Suping. A vertical scanning white-light interfering profilometer [J]. Optical Technique, 2006, 32(4): 545 - 547, 552. (in Chinese)
[82] 李萍. 基于白光干涉法的表面形貌评价和误差补偿[D]. 大连理工大学, 2021.

Li Ping. Surface topography evaluation and error compensation based on white light interferometry [D]. Dalian: Dalian University of Technology, 2021. (in Chinese)
[83] Feng Hui, Wei Boxin, Liu Lusheng, et al. Study on the application of white light interferometer in metal material surface testing [J]. Optics and Optoelectronic Technology, 2020, 18(6): 80-85. (in Chinese) doi:  10.19519/j.cnki.1672-3392.2020.06.012
[84] 王世通. 精密表面缺陷检测散射成像理论建模及系统分析研究[D]. 浙江大学, 2015.

Wang Shitong. Theoretical modeling and system analysis of scattering imaging for precision surface defect detection [D]. Hangzhou: Zhejiang University, 2015. (in Chinese)
[85] Klingsporn P E. Determination of the diameter of an isolated surface defect based on Fraunhofer diffraction [J]. Applied Optics, 1980, 19(9): 1435-1438.
[86] Wu Yongjun, Bai Wenxi. Defects inspection of optical, surface by recognizing laser diffraction patterns [J]. Optical Technique, 1996(4): 4-6. (in Chinese) doi:  10.13741/j.cnki.11-1879/o4.1996.04.001
[87] Wang Guilin, Zhu Junhui, Li Jiaxiang, et al. In situ detection and evaluation of surface defects for large-aperture optical elements [J]. Journal of Applied Optics, 2019, 40(6): 1167-1173. (in Chinese) doi:  10.5768/JAO201940.0605005
[88] Hauptvogel M, Schröder S, Herffurth T, et al. Light scattering techniques for the characterization of optical components[C]//International Conference on Space Optics, 2017, 10563: 1056347.
[89] Yang Yongying, Gao Xin, Xiao Bing, et al. Optical micro imaging and digital evaluation system for super smooth surface defects [J]. Infrared and Laser Engineering, 2010, 39(2): 325-329. (in Chinese) doi:  10.3969/j.issn.1007-2276.2010.02.029
[90] Yang Yongying, Lu Chunhua, Liang Jiao, et al. Microscopic dark-field scattering imaging and digitalization evaluation system of defects on optical devices precision surface [J]. Acta Optica Sinica, 2007, 27(6): 1031-1038. (in Chinese) doi:  10.3321/j.issn:0253-2239.2007.06.015
[91] Yang Yongying, Zhuo Yongmo, Yang Mingjian. Optical profilometer for nondestructive testing of ultra smooth surfaces [J]. Opto-Electronic Engineering, 1999(6): 12-16. (in Chinese)
[92] 张健浦. 熔石英光学元件亚表面/体缺陷检测关键技术研究[D]. 浙江大学, 2020.

Zhang Jianpu. Research on key technologies of subsurface/bulk defect detection of fused silica optical elements [D]. Hangzhou: Zhejiang University, 2020. (in Chinese)
[93] 卢岸. 大口径光学元件亚表面缺陷双通道图像采集系统研究[D]. 浙江大学, 2021.

Lu An. Research on two channel image acquisition system for subsurface defects of large aperture optical elements [D]. Hangzhou: Zhejiang University, 2021. (in Chinese)
[94] 王悦. 光学元件亚表面缺陷检测自动调平与对焦研究[D]. 浙江大学, 2020.

Wang Yue. Research on automatic leveling and focusing for subsurface defect detection of optical elements [D]. Hangzhou: Zhejiang University, 2020. (in Chinese)
[95] Zhang Jianpu, Sun Huanyu, Wang Shiling, et al. Three-dimensional reconstruction technology of subsurface defects in fused silica optical components [J]. Acta Optica Sinica, 2020, 40(2): 0216001. (in Chinese)
[96] 李成瑞. 曲面光学元件表面缺陷检测技术研究[D]. 电子科技大学, 2020.

Li Chengrui. Research on surface defect detection technology of curved optical element [D]. Chengdu: University of Electronic Science and Technology, 2020. (in Chinese)
[97] Greponev A, Grebinyuk E N, Wittman A Д, et al. Automatic inspection of optical part defects [J]. Optical Technique, 1988(5): 20-22. (in Chinese)
[98] Wang Lulu, Gao Aihua, Liu Weiguo, et al. Angular resolution space laser scattering measurement system based on LabVIEW [J]. Optics and Optoelectronic Technology, 2018, 16(3): 40-45. (in Chinese) doi:  10.19519/j.cnki.1672-3392.2018.03.007
[99] Huang Cong, Zhang Kepeng, Wang Xiang, et al. Method for surface quality inspection based on total scattering measurement [J]. Acta Optica Sinica, 2019, 39(7): 0712005. (in Chinese) doi:  10.3788/AOS.201939.0712005
[100] Pezzaniti J L, Hadaway J B, Chipman R A, et al. Total integrated scatter instrument for in-space monitoring of surface degradation[C]//Proceedings of SPIE, 1990, 1329: 200-210.
[101] Hou Haihong. Light scattering measurement method of optical surface [J]. Journal of Changshu Institute of Technology, 2008(8): 46-50. (in Chinese) doi:  10.3969/j.issn.1008-2794.2008.08.011
[102] Stefan G, Jörg S, Angela D. Light-scattering measurements of optical thin-film components at 157 and 193 nm [J]. Applied Optics, 2002, 41(16): 3224-3235. doi:  10.1364/ao.41.003224
[103] Krč J, Zeman M, Kluth O, et al. Effect of surface roughness of ZnO: Al films on light scattering in hydrogenated amorphous silicon solar cells [J]. Thin Solid Films, 2003, 426(1-2): 296-304. doi:  10.1016/S0040-6090(03)00006-3
[104] Guenther K H, Gruber H L, Pulker H K. Morphology and light scattering of dielectric multilayer systems [J]. Thin Solid Films, 1976, 34(2): 363-367. doi:  10.1016/0040-6090(76)90492-2
[105] Bennett Jean M . Comparison of techniques for measuring the roughness of optical surfaces [J]. Optical Engineering, 1985, 24(3): 243380. doi:  10.1117/12.7973493
[106] Duparré A, Kassam S. Relation between light scattering and the microstructure of optical thin films [J]. Applied Optics, 1993, 32(28): 5475-5480. doi:  10.1364/AO.32.005475
[107] Amra C, Grezes-Besset C, Roche P, et al. Description of a scattering apparatus: application to the problems of characterization of opaque surfaces [J]. Applied Optics, 1989, 28(14): 2723-2730. doi:  10.1364/AO.28.002723
[108] Elson J M, Rahn J P, Bennett J M. Light scattering from multilayer optics: comparison of theory and experiment [J]. Applied Optics, 1980, 19(5): 669-679. doi:  10.1364/AO.19.000669
[109] Zhang Xiao, Yang Guoguang, Cheng Shangyi, et al. Laser spectrum analysis method of optical surface defects and its automatic detector [J]. Chinese Journal of Scientific Instrument, 1994(4): 396-399. (in Chinese) doi:  10.19650/j.cnki.cjsi.1994.04.013
[110] Buchtel M E. Virtual image superposing comparator[C]//Proceedings of SPIE, 1993, 1821: 130-151.
[111] Baker L R. Inspection of surface flaws by comparator microscopy [J]. Applied Optics, 1988, 27(22): 4620-4625. doi:  10.1364/AO.27.004620
[112] Baker L R. On-machine measurement of roughness, waviness, and flaws[C]//Proceedings of SPIE, 1990, 1333: 248-256.
[113] Cormack R, Johnson K M, Zhang Lin, et al. Optical inspection of manufactured glass using adaptive fourier filtering [J]. Optical Engineering, 1988, 27(5): 275358. doi:  10.1117/12.7976684
[114] 刘江. 球面及非球面表面疵病检测关键技术研究[D]. 中国科学院研究生院(长春光学精密机械与物理研究所), 2016.

Liu Jiang. Research on key technologies of spherical and aspheric surface defect detection [D]. Changchun: Graduate School of Chinese Academy of Sciences (Changchun Institute of Optics, Precision Mechanics and Physics), 2016. (in Chinese)
[115] Druy M A, Bolduc R A. Fiber optic noncontact reflectance probe for detection of contamination in pharmaceutical mixing vessels[C]//Proceedings of SPIE, 1999, 3538: 167-171.
[116] 马云. 光学元件位相缺陷的动态检测方法研究[D]. 南京理工大学, 2019.

Ma Yun. Research on dynamic detection method of phase defects of optical elements [D]. Nanjing: Nanjing University of Science and Technology, 2019. (in Chinese)
[117] Choi W J, Ryu S Y, Kim J K, et al. Fast mapping of absorbing defects in optical materials by full-field photothermal reflectance microscopy [J]. Optics Letters, 2013, 38(22): 4907-4910. doi:  10.1364/OL.38.004907
[118] 赵丽敏. 基于机器视觉的表面缺陷定量检测技术研究[D]. 浙江大学, 2016.

Zhao Limin. Research on quantitative detection technology of surface defects based on machine vision [D]. Hangzhou: Zhejiang University, 2016. (in Chinese)
[119] 卢国平. 大口径曲面光学元件检测系统及表面疵病图像处理研究[D]. 哈尔滨工业大学, 2018.

Lu Guoping. Research on inspection system of large aperture curved optical element and surface defect image processing [D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese)
[120] Truckenbrodt H, Duparre A, Schuhmann U. Roughness and defect characterization of optical surfaces by light-scattering measurements [C]//Proceedings of SPIE, 1993, 1781: 139-151.
[121] Yamane T, Tanaka T, Terasawa T, et al. Phase defect analysis with actinic full-field EUVL mask blank inspection[C]//Proceedings of SPIE, 2011, 8166: 4.
[122] Zhang Bin, Liu Chanlao. Research on automatic detection technology for spherical optical element surface defect [J]. Optical Instruments, 2013, 35(6): 16-20. (in Chinese) doi:  10.3969/j.issn.1005-5630.2013.06.004
[123] Wang Fanyi,Yang Yongying, Lou Weiming. Fast path planning algorithm for large-aperture aspheric optical elements based on minimum object depth and a self-optimized overlap coefficient [J]. Applied Optics, 2022, 61(11): 3123-3133. doi:  10.1364/AO.450995
[124] 张璇, 宋德林, 张涛, 等. 光学表面微缺陷的高对比度暗场成像检测方法[J]. 机电技术, 2019(1): 86-87, 108. doi:  10.19508/j.cnki.1672-4801.2019.01.025
[125] Su Chengcheng, Wan Xinjun, Chen Hongdou, et al. Research on mirror defect detection technology combining curvature and dark field imaging [J]. Optical Instruments, 2021, 43(3): 1-8. (in Chinese)
[126] Ma Bin, Shen Zhengxiang, He Pengfei, et al. Detection of subsurface defects of fused silica optics by confocal scattering microscopy [J]. Chinese Optics Letters, 2010, 8(3): 296-299. doi:  10.3788/COL20100803.0296
[127] Tian Ailing, Wang Huiting, Dang Juanjuan, et al. Study on subsurface damage detection method of polished surface [J]. Acta Photonica Sinica, 2013, 42(2): 214-218. (in Chinese) doi:  10.3788/gzxb20134202.0214
[128] Bai Qian, Ma Hao, Yin Jingfei. Polarized laser confocal technique for subsurface damage of lapped quartz glass [J]. Optics and Precision Engineering, 2021, 29(8): 1795-1803. (in Chinese) doi:  10.37188/OPE.20212908.1795
[129] Lu S H, Hua H. Structured illumination assisted microdeflec-tometry with optical depth scanning capability [J]. Optics Letters, 2016, 41(17): 4114-4117. doi:  10.1364/OL.41.004114
[130] Sheehan L M, Kozlowski M R, Camp D W. Application of total internal reflection microscopy for laser damage studies on fused silica[C]//Proceedings of SPIE, 1998, 3244: 282-295.
[131] Temple P A. Total internal reflection microscopy: a surface inspection technique [J]. Applied Optics, 1981, 20(15): 2656-2664. doi:  10.1364/AO.20.002656
[132] Fähnle O W, Wons T, Koch E, et al. iTIRM as a tool for qualifying polishing processes [J]. Applied Optics, 2002, 41(19): 4036-4038. doi:  10.1364/ao.41.004036
[133] Conder A, Alger T, Azevedo S, et al. Final optics damage inspection (FODI) for the National Ignition Facility[C]//Preceedings of SPIE, 2007, 6720: 672010.
[134] 程洁. 基于条纹反射法的镜面物体表面缺陷无损检测技术研究[D]. 湘潭大学, 2019.

Cheng Jie. Research on nondestructive testing technology of surface defects of mirror objects based on fringe reflection method [D]. Xiangtan: Xiangtan University, 2019. (in Chinese)
[135] Zhao Wenchuan, Zhong Xianyun, Liu Bin. Optical surface defect detection method based on fringe reflection [J]. Acta Photonica Sinica, 2014, 43(9): 0912007. (in Chinese)
[136] 满玉春. 基于数字莫尔条纹的非球面检测技术研究[D]. 中国科学院研究生院(长春光学精密机械与物理研究所), 2011.

Man Yuchun. Research on aspheric surface detection technology based on digital moire fringe [D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Precision Mechanics and Physics, Chinese Academy of Sciences), 2011. (in Chinese)
[137] Perard D, Beyerer J. Three-dimensional measurement of specular free-form surfaces with a structured-lighting reflection technique[C]//Proceedings of SPIE, 1997, 3204: 74-80.
[138] Lei H, Seng N C, Asundi A K. Dynamic three-dimensional sensing for specular surface with monoscopic fringe reflectometry [J]. Optics Express, 2011, 19(13): 12809-12814. doi:  10.1364/OE.19.012809
[139] Petz M, Ritter R. Reflection grating method for 3D measure-ment of reflecting surfaces[C]//Proceedings of SPIE, 2001, 4399: 35-41.
[140] Knauer M C, Kaminski J, Hausler G. Phase measuring deflectometry: a new approach to measure specular free-form surfaces[C]//Proceedings of SPIE, 2004, 5457: 366-376.
[141] Bothe T, Li Wansong, von Kopylow C, et al. High-resolution 3D shape measurement on specular surfaces by fringe reflection[C]//Proceedings of SPIE, 2004, 5457: 411-422.
[142] Petz M, Tutsch R. Reflection grating photogrammetry: a technique for absolute shape measurement of specular free-form surfaces[C]//Proceedings of SPIE, 2005, 5869: 58691D.
[143] Su Peng, Wang Shanshan, Khreishi Manal, et al. SCOTS: a reverse Hartmann test with high dynamic range for Giant Magellan Telescope primary mirror segments [C]//Proceedings of SPIE, 2012, 8450: 84500W.
[144] Su Xianyu, Zhang Guanshen, Chen Zexian, et al. Photoelectric automatic measurement system for three-dimensional surface shape of shoe last [J]. Optical Engineering, 1989(6): 1-5. (in Chinese)
[145] Su Xianyu, Zhou Wensen, von Bally G, et al. Automated phase-measuring profilometry using defocused projection of a Ronchi grating [J]. Optics Communications, 1992, 94(6): 561-573.
[146] Chen Z Y, Zhao W C, Zhang Q C, et al. Shape measurement of stressed mirror based on stereoscopic phase measuring deflectometry [J]. Opto-Electronic Engineering, 2020, 47(8): 84-92. (in Chinese) doi:  10.12086/oee.2020.190435
[147] Su Xianyu. Three dimensional (digital) imaging based on the concept of equivalent light wave [J]. Journal of Optoelectronics·Laser, 2000, 11(3): 330. (in Chinese) doi:  10.3321/j.issn:1005-0086.2000.03.033
[148] Tang Yan, Su Xianyu, Hu Song. Measurement based on fringe reflection for testing aspheric optical axis precisely and flexibly [J]. Applied Optics, 2011, 50(31): 5944-5948. doi:  10.1364/AO.50.005944
[149] Su Xianyu, Zhang Qican, Chen Wenjing. Three-dimensional imaging based on structured illumination [J]. Chinese Journal of Lasers, 2014, 41(2): 0209001. (in Chinese)
[150] Tang Yan, Su Xianyu, Liu Yuankun, et al. 3D shape measurement of the aspheric mirror by advanced phase measuring deflectometry [J]. Optics Express, 2008, 16(19): 15090-15096.
[151] Tang Yan, Su Xianyu, Wu Fan, et al. A novel phase measuring deflectometry for aspheric mirror test [J]. Optics Express, 2009, 17(22): 19778-19784. doi:  10.1364/OE.17.019778
[152] Tang Yan, Su Xianyu, Liu Yuankun, et al. Three-dimensional shape measurement of aspheric mirror based on fringe reflection [J]. Acta Optica Sinica, 2009, 29(4): 965-969. (in Chinese)
[153] Zhao Wenchuan, Su Xianyu, Liu Yuankun, et al. Testing an aspheric mirror based on phase measuring deflectometry [J]. Chinese Journal of Lasers, 2010, 37(5): 1338-1341. (in Chinese) doi:  10.3788/CJL20103705.1338
[154] Zhao Wenchuan, Fan Bin, Wu Fan, et al. Experimental analysis of reflector test based on phase measuring deflectometry [J]. Acta Optica Sinica, 2013, 33(1): 98-101. (in Chinese)
[155] Zhu Cong, Yu Guangting, Li Bolin, et al. A new method for measuring the surface defect width of precision optical lenses [J]. Computer Applications and Software, 2014, 31(12): 259-261, 286. (in Chinese) doi:  10.3969/j.issn.1000-386x.2014.12.063
[156] 宋一平. 基于条纹反射的手机玻璃盖板三维面形检测方法研究[D]. 电子科技大学, 2019.

Song Yiping. Research on three-dimensional surface shape detection method of mobile phone glass cover based on stripe reflection [D]. Chengdu: University of Electronic Science and Technology, 2019. (in Chinese)
[157] Huang Yiyang, Wang Jie, Song Yiping, et al. A novel defect detection method with eliminating dust for specular surfaces based on structured-light modulation analysis technique [J]. Optics and Laser Technology, 2021, 141: 107089. doi:  https://doi.org/10.1016/j.optlastec.2021.107089
[158] Wang Wei, Wang Jie, Huang Yiyang, et al. Surface defect detection in transparent objects using polarized transmission structured light [J]. Acta Optica Sinica, 2021, 41(18): 1812002. (in Chinese)
[159] 周政. 基于相位测量偏折术的石墨烯光学表征方法研究[D]. 电子科技大学, 2019.

Zhou Zheng. Research on optical characterization of graphene based on phase measurement deflection [D]. Chengdu: University of Electronic Science and Technology, 2019. (in Chinese)
[160] 吴雨祥. 基于光学三维成像的镜面物体表面质量检测方法研究[D]. 电子科技大学, 2017.

Wu Yuxiang. Research on surface quality detection method of mirror object based on optical three-dimensional imaging [D]. Chengdu: University of Electronic Science and Technology, 2017. (in Chinese)
[161] Sun Ying, Fu Luhua, Wang Zhong. A fast detection algorithm for ceramic ball surface defects based on fringe reflection [J]. Journal of Measurement Science and Instrumentation, 2020, 11(1): 28-37.
[162] 张恺. 陶瓷球表面缺陷视觉检测关键技术研究[D]. 天津大学, 2017.

Zhang Kai. Research on key technologies of visual inspection of ceramic ball surface defects [D]. Tianjin: Tianjin University, 2017. (in Chinese)
[163] Jiang Meihua, Fu Luhua, Wang Zhong, et al. A new method for specular curved surface defect inspection based on reflected pattern integrity [J]. Journal of Measurement Science and Instrumentation, 2016, 7(3): 221-228.
[164] Song Yuhang, Wang Zhong, Fu Luhua, et al. A method for detecting reflection fringes of surface defects on highly reflective surfaces [J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(8): 1250-1254. (in Chinese) doi:  10.13433/j.cnki.1003-8728.2017.0817
[165] Chen Mingzhou, Wang Zhong, Kou Xinyu, et al. Non-contact nondestructive testing method of 3D curved surface based on vision technology [J]. Nondestructive Testing, 2001, 23(9): 372-374, 413. (in Chinese)
[166] Jiang Shuo, Yang Linghui, Ren Yongjie, et al. Defect detection in mirror-like object surface based on phase deflection [J]. Laser and Optoelectronics Progress, 2020, 57(3): 031201. (in Chinese)
[167] Zhu Ronggang, Zhu Rihong, Song Qian, et al. Specular surface measurement based on fringe reflection and study on 3D shape reconstruction technique[C]//Proceedings of SPIE, 2013, 8769: 87692S.
[168] 袁婷. 基于条纹反射法的大口径非球面反射镜面形检测技术研究[D]. 中国科学院研究生院(长春光学精密机械与物理研究所), 2016.

Yuan Ting. Research on the detection technology of large aperture aspheric surface reflection based on fringe reflection [D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Precision Mechanics and Physics, Chinese Academy of Sciences), 2016. (in Chinese)
[169] Wan Xinjun, Bin Boyi, Xie Shuping, et al. Development of an integrated freeform optics measurement system based on phase measuring deflectometry[C]//Proceedings of SPIE, 2018, 10847: 1084710.
[170] Guo C F, Hu A D. Three-dimensional shape measurement of aspheric mirrors with null phase measuring deflectometry [J]. Optical Engineering, 2019, 58(10): 104102.
[171] Tao Tao, Guo Hongwei, He Haitao. Overview of optical three-dimensional measurement technique for specular reflection surfaces [J]. Optical Instruments, 2005, 27(2): 90-95. (in Chinese) doi:  10.3969/j.issn.1005-5630.2005.02.020
[172] Zhao Wenchuan, Zhou Min, Liu Haitao, et al. The off-axis aspheric mirror testing based on the fringe reflection technique [J]. Opto-Electronic Engineering, 2018, 45(7): 32-39. (in Chinese)
[173] Dai Cen, Ging Yan, Zhang Hao, et al. Detection system of multilayer coating microstructure defects based on differential interference contrast confocal microscopy [J]. Chinese Optics, 2018, 11(2): 255-264. (in Chinese) doi:  10.3788/co.20181102.0255
[174] Duncan M, Bashkansky M, Reintjes J. Subsurface defect detection in materials using optical coherence tomography [J]. Optics Express, 1998, 13(2): 540-545. doi:  https://doi.org/10.1364/OE.2.000540
[175] Savvy Inspector. Savvy Inspector Technical Specification[EB/OL]. [2020-04-20]. http://www.savvyoptics.com/SavvyInspectorTM.html.
[176] DIOPTIC. ARGOS–Optical surface inspection[EB/OL]. [2020-04-20]. https://www.dioptic.de/en/argos-en/.
[177] 杨甬英, 刘东, 谢世斌, 等. 可用于车间现场精密元件表面缺陷自动化检测的装置[C]//第十五届全国光学测试学术交流会论文摘要集, 2014: 123.