[1] Chen Z. Thermal-hydraulics design and safety analysis of a 100 MWth small natural circulation lead cooled fast reactor SNCLFR-100 [D]. Hefei: University of Science and Technology of China, 2015: 1-6. (in Chinese)
[2] Liu X L, Gao Z X, Sui H Z. Experimental condition optimization for plutonium oxide surrogate by LIBS [J]. Laser & Opto-electronics Progress, 2018, 55(12): 121408. (in Chinese)
[3] Sun L X, Yu H B. Automatic estimation of varying continuum background emission in laser-induced breakdown spectroscopy [J]. Spectrochim Acta Part B, 2009, 64(3): 278-287. doi:  https://doi.org/10.1016/j.sab.2009.02.010
[4] Aragón C, Aguilera J A. Characterization of laser induced plasmas byoptical emission spectroscopy: A review of experiments and methods [J]. Spectrochim Acta Part B, 2008, 63(9): 893-916. doi:  https://doi.org/10.1016/j.sab.2008.05.010
[5] Russo R E, Mao X L, Liu H C, et al. Laser ablation in analytical chemistry-a review [J]. Talanta, 2002, 57(3): 425-451. doi:  https://doi.org/10.1016/S0039-9140(02)00053-X
[6] Wang Y, Zhao N J, Ma M J, et al. Chromium detection in water enriched with graphite based on laser-induced breakdown spectroscopy [J]. Laser Technology, 2013, 37(6): 808-811. (in Chinese)
[7] Liu X Y, Wang Z Y, Hao L Q, et al. Application of laser induced breakdown spectroscopy technology in biomedicine field [J]. Laser Technology, 2008, 32(2): 134-136. (in Chinese)
[8] Ramil A, Lopez A J, Yanez A. Application of artificial neural networks for the rapid classification of archaeological ceramics by means of laser induced breakdown spectroscopy (LIBS) [J]. Applied Physics, 2008, A92(1): 197-202.
[9] Lanza L N, Wiens R C, Clegg S M, et al. Calibrating the ChemCam laser-induced breakdown spectroscopy instrument for carbonate minerals on mars [J]. Applied Optics, 2010, 49(13): C211-C217. doi:  10.1364/AO.49.00C211
[10] Zeng Q, Sirven J B, Gabriel J C P, et al. Laser induced breakdown spectroscopy for plastic analysis [J]. TrAC Trends in Analytical Chemistry, 2021, 140: 116280. doi:  https://doi.org/10.1016/j.trac.2021.116280
[11] Mal E, Junjuri R, Gundawar M K, et al. Time and space-resolved laser-induced breakdown spectroscopy on molybdenum in air [J]. Applied Physics B, 2021, 127(4): 1-11.
[12] Ernst W E, Faeson D F, Sames D J. Determination of copper in A533b steel for the assessment of radiation embrittlement using laser-induced breakdown spectroscopy [J]. Applied Spectro-scopy, 1996, 50(3): 306-309.
[13] Sarker A, Telmore V M T, Alamelu D, et al. Laser-induced breakdown spectroscopy quantification of platinum group metals in simulated high level nuclear waste [J]. Journal of Analytical Atomic Spectrometry, 2009, 24(11): 1545-1550. doi:  10.1039/b913519g
[14] Grisolia C, Semerok A, Weulersse J M, et al. Insitu tokamak laser applications for detritiation and co-deposited layers studies [J]. Journal of Nuclear Materials, 2007, 363-365: 1138-1147. doi:  https://doi.org/10.1016/j.jnucmat.2007.01.169
[15] NIST Atomic Spectra Database. [DB/OL]. https://physics.nist.gov.