[1] Zhao Yiming, Li Yanhua, Shang Yanan, et al. Application and development direction of lidar [J]. Journal of Telemetry, Tracking and Command, 2014(5): 4-22. (in Chinese)
[2] Dailey H J. Characterization of surface karst using LiDAR and field traverses, Fort hood military installation, coryell county, texas[J]. 2020.
[3] Xu Runjun, Chen Xinzhong. Application of lidar in military [J]. Physics and Engineering, 2002(6): 36-39. (in Chinese)
[4] Collis R T H. Lidar [J]. Advances in Geophysics, 1969, 13: 113-139.
[5] Xia Junrong, Zhang Lei. Advances in detecting aerosols with mie lidar [J]. Arid Meteorology, 2006, 24(4): 68. (in Chinese)
[6] Zhang Haifeng, Cheng Zhien, Li Pu, et al. Design of lidar cooperative target and its application to space rendezvous and docking [J]. Infrared and Laser Engineering, 2015, 44(9): 2556-2561. (in Chinese)
[7] Lin Hui. Map building and obstacle detection based on vehicle-mounted multiple lidars[D]. Hangzhou: Zhejiang University, 2017. (in Chinese)
[8] Chen Xiaodong, Zhang Jiachen. Pang Weisong, et al. Key technology and application algorithm of intelligent driving vehicle LiDAR [J]. Opto-Electronic Engineering, 2019, 46(7): 190182. (in Chinese)
[9] Li B J, Li Q Q, Shi W Z, et al. Feature extraction and modeling of urban building from vehicle-borne laser scanning data [J]. Geomatics and Information Science of Wuhan University, 2004, 35: 934-939.
[10] Kong Dong, Wang Xiaoyuan, Liu Yaqi, et al. Vehicle target identification algorithm based on point cloud of vehicle 32-line laser lidar [J]. Science Technology and Engineering, 2018, 18(5): 81-85. (in Chinese)
[11] Abuhadrous I, Ammoun S, Nashashibi F, et al. Digitizing and 3 D modeling of urban environments and roads using vehicle-borne laser scanner system[C]//2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2004, 1: 76-81.
[12] Duan Jianmin, Li Longjie, Zheng Kaihua. Preceding drivable area detection based on four-layer laser radar [J]. Automobile Technology, 2016(2): 55-62. (in Chinese)
[13] Shen Zhenmin, Shang Weidong, Wang Bingjie, et al. Lidar with high scattering ratio suppression for underwater detection [J]. Acta Photonica Sinica, 2020, 49(6): 0601001. (in Chinese) doi:  10.3788/gzxb20204906.0601001
[14] Xie Jiaming. Research of water cloud parameters combined with multi-scattering polarization lidar[D]. Nanjing: Nanjing University of Information Science and Technology, 2020. (in Chinese)
[15] Chang P C Y, Flitton J C, Hopcraft K I, et al. Improving visibility depth in passive underwater imaging by use of polarization [J]. Applied Optics, 2003, 42(15): 2794-2803. doi:  10.1364/AO.42.002794
[16] Wei Yi, Liu Fei, Yang Kui, et al. Passive underwater polarization imaging detection method in neritic area [J]. Acta Physica Sinica, 2018, 67(15): 154201. (in Chinese) doi:  10.7498/aps.67.20180230
[17] Nevis A J. Automated processing for streak tube imaging lidar data[C]// SPIE, 2003, 5089: 119-129.
[18] Chang Xin, Chen Xiaodong, Zhang Jiachen, et al. An object detection and tracking algorithm based on lidar and camera information fusion [J]. Opto-Electronic Engineering, 2019, 46(7): 180420. (in Chinese)
[19] Fournier G R, Bonnier D, Forand J L, et al. Range-gated underwater laser imaging system [J]. Optical Engineering, 1993, 32(9): 2185-2190. doi:  10.1117/12.143954
[20] Cao Fengmei, Jin Weiqi, Huang Youwei, et al. Review of underwater opto-electrical imaging technology and equipment (I)-underwater laser range-gated imaging technology [J]. Infrared Technology, 2011, 33(2): 63-69. (in Chinese)
[21] Katz O, Heidmann P, Fink M, et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations [J]. Nature Photonics, 2014, 8(10): 784-790. doi:  10.1038/nphoton.2014.189
[22] Wang Jing, Bai Xing, Wang Jinchao, et al. Multi-frame speckle imaging based on phase diversity using spatial light modulator [J]. Optics & Optoelectronic Technology, 2020, 18(3): 70. (in Chinese)
[23] Liu H, Liu Z, Chen M, et al. Physical picture of the optical memory effect [J]. Photonics Research, 2019, 7(11): 1323-1330. doi:  10.1364/PRJ.7.001323
[24] Wang X, Jin X, Li J. Blind position detection for large field-of-view scattering imaging [J]. Photonics Research, 2020, 8(6): 920-928. doi:  10.1364/PRJ.388522
[25] Zhu S, Guo E, Gu J, et al. Imaging through unknown scattering media based on physics-informed learning [J]. Photonics Research, 2021, 9(5): B210-B219. doi:  10.1364/PRJ.416551
[26] Zhu L, Soldevila F, Moretti C, et al. Large field-of-view non-invasive imaging through scattering layers using fluctuating random illumination [J]. Nature Communications, 2022, 13(1): 1-6. doi:  10.1038/s41467-021-27699-2
[27] Xu X, Xie X, Thendiyammal A, et al. Imaging of objects through a thin scattering layer using a spectrally and spatially separated reference [J]. Optics Express, 2018, 26(12): 15073-15083. doi:  10.1364/OE.26.015073
[28] McCarthy A, Ren X, Della Frera A, et al. Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector [J]. Optics Express, 2013, 21(19): 22098-22113. doi:  10.1364/OE.21.022098
[29] Maccarone A, McCarthy A, Ren X, et al. Underwater depth imaging using time-correlated single-photon counting [J]. Optics Express, 2015, 23(26): 33911-33926. doi:  10.1364/OE.23.033911
[30] Satat G, Tancik M, Raskar R. Towards photography through realistic fog[C]//2018 IEEE International Conference on Computational Photography (ICCP). IEEE, 2018: 1-10.
[31] Tobin R, Halimi A, McCarthy A, et al. Three-dimensional single-photon imaging through obscurants [J]. Optics Express, 2019, 27(4): 4590-4611. doi:  10.1364/OE.27.004590
[32] Mie G. Beiträge zur optik trüber medien, speziell kolloidaler metallösungen [J]. Annalen der Physik, 1908, 330(3): 377-445. doi:  10.1002/andp.19083300302
[33] Shen Jianqi, Liu Lei. An improved algorithm of classical mie scattering calculation [J]. China Powder Science and Technology, 2005, 11(4): 1-5. (in Chinese)
[34] Lentz W J. Generating bessel functions in mie scattering calculations using continued fractions [J]. Applied Optics, 1976, 15(3): 668-671. doi:  10.1364/AO.15.000668
[35] Wiscombe W J. Improved mie scattering algorithms [J]. Applied Optics, 1980, 19(9): 1505-1509. doi:  10.1364/AO.19.001505
[36] Wu Dehuai. Research on fast algorithm for MIE scattering coefficients in wide rang[D]. Xi'an: Xidian University, 2009. (in Chinese)
[37] Dave J V. Scattering of visible light by large water spheres [J]. Applied Optics, 1969, 8(1): 155-164. doi:  10.1364/AO.8.000155
[38] Bohren C F, Huffman D R. Absorption and Scattering of Light by Small Particles[M]. US: John Wiley & Sons, 2008.
[39] Huang Jue, Yang Fanlin, Chen Liqiong, et al. Effects of nonuniform vertical profile of suspended particulate matter on water optical properties [J]. Guangxi Sciences, 2016, 23(6): 507-512. (in Chinese)
[40] Wang L, Jacques S L. Monte Carlo Modeling of Light Transport in Multi-layered Tissues in Standard C[M]. Houston: The University of Texas, MD Anderson Cancer Center, 1992.
[41] Toublanc D. Henyey-greenstein and mie phase functions in monte carlo radiative transfer computations [J]. Applied Optics, 1996, 35(18): 3270-3274. doi:  10.1364/AO.35.003270
[42] Wang X, Wang L V. Propagation of polarized light in birefringent turbid media: A Monte Carlo study [J]. Journal of Biomedical Optics, 2002, 7(3): 279-290. doi:  10.1117/1.1483315
[43] Qiao Kai. Three-dimensional imaging via time-correlated single-photon counting in turbid media[D]. Harbin: Harbin Institute of Technology, 2021. (in Chinese)