[1] Alexander K, van Vaerenbergh T, Fiers M, et al. Excitability in optically injected microdisk lasers with phase controlled excitatory and inhibitory response [J]. Opt Express, 2013, 21(22): 26182-26191. doi:  10.1364/OE.21.026182
[2] Peter E, Senellart P, Martrou D, et al. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity [J]. Phys Rev Lett, 2005, 95(6): 067401. doi:  10.1103/PhysRevLett.95.067401
[3] Gil-santos E, Baker C, Nguyen D T, et al. High-frequency nano-optomechanical disk resonators in liquids [J]. Nat Nanotechnol, 2015, 10(9): 810-816. doi:  10.1038/nnano.2015.160
[4] Wang D, Zhu T, Oliver R A, et al. Ultra-low-threshold InGaN/GaN quantum dot micro-ring lasers [J]. Opt Lett, 2018, 43(4): 799-802. doi:  10.1364/OL.43.000799
[5] Xu X, Chen W, Zhao G, et al. Wireless whispering-gallery-mode sensor for thermal sensing and aerial mapping [J]. Light Sci Appl, 2018, 7(1): 62. doi:  10.1038/s41377-018-0063-4
[6] Mccall S L, Levi A F J, Slusher R E, et al. Whispering-gallery mode microdisk lasers [J]. Applied Physics Letters, 1992, 60(3): 289-291. doi:  10.1063/1.106688
[7] Feng M, He J, Sun Q, et al. Room-temperature electrically pumped InGaN-based microdisk laser grown on Si [J]. Opt Express, 2018, 26(4): 5043-5051. doi:  10.1364/OE.26.005043
[8] Wang J, Feng M, Zhou R, et al. GaN-based ultraviolet microdisk laser diode grown on Si [J]. Photonics Research, 2019, 7(6): B32-B35. doi:  10.1364/PRJ.7.000B32
[9] Wang J, Feng M, Zhou R, et al. Continuous-wave electrically injected GaN-on-Si microdisk laser diodes [J]. Opt Express, 2020, 28(8): 12201-12208. doi:  10.1364/OE.391851
[10] Wang J, Feng M, Zhou R, et al. Thermal characterization of electrically injected GaN-based microdisk lasers on Si [J]. Applied Physics Express, 2020, 13(7): 074002. doi:  10.35848/1882-0786/ab95f0
[11] Tang Y, Feng M, Zhao H, et al. Electrically injected GaN-on-Si blue microdisk laser diodes [J]. Opt Express, 2022, 30(8): 13039-13046. doi:  10.1364/OE.455620
[12] Feng M, Zhao H, Zhou R, et al. Continuous-wave current injected InGaN/GaN microdisk laser on Si (100) [J]. ACS Photonics, 2022, 28(8): 2208-2215.
[13] Zhao H, Feng M, Liu J, et al. Performance improvement of GaN-based microdisk lasers by using a PEALD-SiO2 passivation layer [J]. Optics Express, 2023, 31(12): 20212-20220. doi:  10.1364/OE.493849
[14] Kuramoto M, Sasaoka C, Futagawa N, et al. Reduction of Internal loss and threshold current in a laser diode with a ridge by selective re-growth (RiS-LD) [J]. Phys Status Solidi, 2002, 192(2): 329-334. doi:  10.1002/1521-396X(200208)192:2<329::AID-PSSA329>3.0.CO;2-A
[15] Efremov A A, Tarkhin D V, Bochkareva N I, et al. Determination of the coefficient of light attenuation in thin layers of light-emitting diodes [J]. Semiconductors, 2006, 40(3): 375-378. doi:  10.1134/S1063782606030225
[16] 王瑾. 硅衬底GaN基微盘激光器的设计与制备研究 [D]. 北京; 北京科技大学, 2020.

Wang Jin. Design and fabrication of GaN-based microdisk lasers on Si substrate [D]. Beijing: University of Science and Technology Beijing, 2020. (in Chinese)
[17] Zhu G, Li J, Li J, et al. Single-mode ultraviolet whispering gallery mode lasing from a floating GaN microdisk [J]. Opt Lett, 2018, 43(4): 647-650. doi:  10.1364/OL.43.000647
[18] Zhang Y, Li H, Li P, et al. Optically-pumped single-mode deep-ultraviolet microdisk lasers with algan-based multiple quantum wells on Si substrate [J]. IEEE Photonics Journal, 2017, 9(5): 1-8.
[19] Tamboli A C, Haberer E D, Sharma R, et al. Room-temperature continuous-wave lasing in GaN/InGaN microdisks [J]. Nature Photonics, 2006, 1(1): 61-64.