[1] Zhang Z D, Xue Z Y, Chen Y, et al. Boosting verified training for robust image classifications via abstraction[C]//Proc of the IEEE Conference on Computer Vision & Pattern Recognition, 2023: 16251-16260.
[2] Muhammad F N, Muhammad G Z A K, Xian Y Q, et al. I2mvformer: large language model generated multi-view document supervision for zero-shot image classification[C]//Proc of the IEEE Conference on Computer Vision & Pattern Recognition, 2023: 15169-15179.
[3] Zhu Y, Tang J, Li S, et al. Derendernet: intrinsic image decomposition of urban scenes with shape-(in)dependent shading rendering[C]//Proc of the 2021 IEEE International Conference on Computational Photography (ICCP), 2021: 1-11.
[4] Zhang F, Jiang X, Xia Z, et al. Non-local color compensation network for intrinsic image decomposition [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(1): 132-145. doi:  10.1109/TCSVT.2022.3199428
[5] Minaee S, Boykov Y, Porikli F, et al. Image segmentation using deep learning: a survey [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 44(7): 3523-3542.
[6] Clough J R, Byrne N, Oksuz I, et al. A topological loss function for deep-learning based image segmentation using persistent homology [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 44(12): 8766-8778.
[7] 王冬冬, 张炜, 金国锋, 等. 尖点突变理论在红外热波检测图像分割中的应用 [J]. 红外与激光工程, 2014, 43(3): 1009-1015. doi:  10.3969/j.issn.1007-2276.2014.03.060

Wang Dongdong, Zhang Wei, Jin Guofeng, et al. Application of cusp catastrophic theory in image segmentation of infrared thermal waving inspection [J]. Infrared and Laser Engineering, 2014, 43(3): 1009-1015. (in Chinese) doi:  10.3969/j.issn.1007-2276.2014.03.060
[8] Zou Z, Shi Z, Guo Y, et al. Object detection in 20 years: a survey[J]. Proceedings of the IEEE, 2023, 111(3): 257-276.
[9] Li X, Lv C, Wang W, et al. Generalized focal loss: towards efficient representation learning for dense object detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(3): 3139-3153.
[10] Kong Y, Fu Y. Human action recognition and prediction: a survey [J]. International Journal of Computer Vision, 2022, 130(5): 1366-1401. doi:  10.1007/s11263-022-01594-9
[11] Sun Z, Ke Q, Rahmani H, et al. Human action recognition from various data modalities: A review [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(3): 3200-3225.
[12] Seidenschwarz J, Brasó G, Elezi I, et al. Simple cues lead to a strong multi-object tracker[C]//Proc of the IEEE Conference on Computer Vision and Pattern Recognition, 2023: 13813-13823.
[13] Hu W, Wang Q, Zhang L, et al. Siammask: a framework for fast online object tracking and segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(3): 3072-3089.
[14] 陈法领, 丁庆海, 罗海波, 等. 采用时空上下文的抗遮挡实时目标跟踪 [J]. 红外与激光工程, 2021, 50(1): 20200105. doi:  10.3788/IRLA20200105

Chen Faling, Ding Qinghai, Luo Haibo, et al. Anti-occlusion real time target tracking algorithm employing spatio-temporal context [J]. Infrared and Laser Engineering, 2021, 50(1): 20200105. (in Chinese) doi:  10.3788/IRLA20200105
[15] 李博, 张心宇. 复杂场景下基于自适应特征融合的目标跟踪算法 [J]. 红外与激光工程, 2022, 51(10): 20220013.

Li Bo, Zhang Xinyu. Target tracking algorithm based on adaptive feature fusion in complex scenes [J]. Infrared and Laser Engineering, 2022, 51(10): 20220013. (in Chinese)
[16] Shafer S A. Using color to separate reflection components [J]. Color Research & Application, 1985, 10(4): 210-218.
[17] Yang Q, Tang J, Ahuja N. Efficient and robust specular highlight removal [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(6): 1304-1311. doi:  10.1109/TPAMI.2014.2360402
[18] Fu G, Zhang Q, Song C, et al. Specular highlight removal for real-world images [J]. Computer Graphics Forum, 2019, 38(7): 253-263. doi:  10.1111/cgf.13834
[19] Kim H, Jin H, Hadap S, et al. Specular reflection separation using dark channel prior[C]//Proc of the IEEE Conference on Computer Vision & Pattern Recognition, 2013: 1460-1467.
[20] Tan R T, Ikeuchi K. Separating reflection components of textured surfaces using a single image [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(2): 178-193. doi:  10.1109/TPAMI.2005.36
[21] Liu Y, Yuan Z, Zheng N, et al. Saturation-preserving specular reflection separation[C]//Proc of the IEEE Conference on Computer Vision & Pattern Recognition, 2015: 3725-3733.
[22] Suo J, An D, Ji X, et al. Fast and high quality highlight removal from a single image [J]. IEEE Transactions on Image Processing, 2016, 25(11): 5441-5454. doi:  10.1109/TIP.2016.2605002
[23] Yang Q X, Wang S N, Ahuja N. Real-time specular highlight removal using bilateral filtering[C]//Proc of the 11th European Conference on Computer Vision, 2010: 87-100.
[24] Fu G, Zhang Q, Lin Q, et al. Learning to detect specular highlights from real-world images[C]//Proc of the ACM International Conference on Multimedia, 2020: 1873-1881.
[25] Shi J, Dong Y, Su H, et al. Learning non-lambertian object intrinsics across shapenet categories[C]//Proc of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1685-1694.
[26] Yi R, Tan P, Lin S. Leveraging multi-view image sets for unsupervised intrinsic image decomposition and highlight separation[C]//Proc of the AAAI Conference on Artificial Intelligence, 2020: 12685-12692.
[27] Huang Z, Hu K, Wang X. M2-NET: multi-stages specular highlight detection and removal in multi-scenes [DB/OL]. (2022-07-20) [2024-02-20].https://arxiv.dosf.top/abs/2207.09965.
[28] Hou S, Wang C, Quan W, et al. Text-aware single image specular highlight removal[C]//Proc of the 4th Chinese Conference on Pattern Recognition and Computer Vision (PRCV), 2021: 115-127.
[29] Jimenez-Martin L, Perez D A V, Asteasuainzarra A S M, et al. Specular reflections removal in colposcopic images based on neural networks: Supervised training with no ground truth previous knowledge [DB/OL]. (2020-06-21) [2024-02-20].https://doi.org/10.48550/arXiv.2106.02221.
[30] Fu G, Zhang Q, Zhu L, et al. A multi-task network for joint specular highlight detection and removal[C]//Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021: 7748-7757.
[31] Li K, Wang Y, Zhang J, et al. Uniformer: unifying convolution and self-attention for visual recognition [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2023(1): 1-18.
[32] Gulati A, Qin J, Chiu C C, et al. Conformer: convolutionaugmented transformer for speech recognition [DB/OL].(2020-05-16)[2024-02-20].https://doi.org/10.48550/arXiv.2005.08100.
[33] Jiang Z H, Yu W, Zhou D, et al. Convbert: improving bert with span-based dynamic convolution [J]. Advances in Neural Information Processing Systems, 2020, 33: 12837-12848.
[34] Wu H, Xiao B, Codella N, et al. Cvt: introducing convolutions to vision transformers[C]//Proc of the IEEE/CVF International Conference on Computer Vision, 2021: 22-31.
[35] Saint-Pierre C A, Boisvert J, Grimard G, et al. Detection and correction of specular reflections for automatic surgical tool segmentation in thoracoscopic images [J]. Machine Vision & Applications, 2011, 22(1): 171-180.
[36] Akashi Y, Okatani T. Separation of reflection components by sparse non-negative matrix factorization[C]//Proc of the Asian Conference on Computer Vision, 2015: 611-625.
[37] Yamamoto T, Nakazawa A. General improvement method of specular component separation using high-emphasis filter and similarity function [J]. ITE Transactions on Media Technology and Applications, 2019, 7(2): 92-102. doi:  10.3169/mta.7.92