[1] Pittman T B, Shih Y H, Strekalov D V, et al. Optical imaging by means of two-photon quantum entanglement [J]. Physical Review A, 1995, 52(5): R3429. doi:  10.1103/PhysRevA.52.R3429
[2] Bennink R S, Bentley S J, Boyd R W. "Two-Photon" coincidence imaging with a classical source [J]. Physical Review Letters, 2002, 89(11): 113601. doi:  10.1103/PhysRevLett.89.113601
[3] Shapiro J H. Computational ghost imaging [C]// Conference on Lasers & Electro-optics, 2008: 061802.
[4] Candès E, Romberg J. Sparsity and incoherence in compressive sampling [J]. Inverse Problems, 2007, 23(3): 969-985. doi:  10.1088/0266-5611/23/3/008
[5] Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi:  10.1109/TIT.2006.871582
[6] Baraniuk R G. Compressive sensing [lecture notes] [J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-120. doi:  10.1109/MSP.2007.4286571
[7] Candès E J. Compressive sampling[C]// Proceedings of the 2006 International Congress of Mathematicians, 2006: 1433-1452.
[8] Llull P, Liao X, Yuan X, et al. Coded aperture compressive temporal imaging [J]. Optics Express, 2013, 21(9): 10526-10545. doi:  10.1364/OE.21.010526
[9] Duarte M F, Davenport M A, D Takhar, et al. Single-pixel imaging via compressive sampling [J]. IEEE Signal Processing Magazine, 2008, 25(2): 83-91. doi:  10.1109/MSP.2007.914730
[10] Ferri F, Magatti D, Lugiato L A, et al. Differential ghost imaging [J]. Physical Review Letters, 2010, 104(25): 253603. doi:  10.1103/PhysRevLett.104.253603
[11] Sun B, Welsh S, Edgar M P, et al. Normalized ghost imaging [J]. Optics Express, 2012, 20(15): 16892-16901. doi:  10.1364/OE.20.016892
[12] Sun M J, Edgar M P, Phillips D B, et al. Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning [J]. Optics Express, 2016, 24(10): 10476. doi:  10.1364/OE.24.010476
[13] Edgar M P, Gibson G M, Bowman R W, et al. Simultaneous real-time visible and infrared video with single-pixel detectors [J]. Scientific Reports, 2015, 5(1): 745-755.
[14] Gibson G M, Sun B Q, Edgar M P, et al. Real-time imaging of methane gas leaks using a single-pixel camera [J]. Optics Express, 2017, 244(10): 62-66.
[15] Liu S, Yao X R, Liu X F, et al. Pile-up effect in an infrared single-pixel compressive LiDAR system [J]. Optics Express, 2019, 27(16): 22138-22146. doi:  10.1364/OE.27.022138
[16] Sun B Q, Jiang S, Ma Y Y, et al. Application development of single-pixel imaging in special wavebands and 3D imaging [J]. Infrared and Laser Engineering, 2020, 49(3): 0303016. (in Chinese) doi:  10.3788/IRLA202049.0303016
[17] Klein Y, Schori A, Dolbnya I P, et al. X-ray computational ghost imaging with single-pixel detector [J]. Optics Express, 2019, 27(3): 3284-3293. doi:  10.1364/OE.27.003284
[18] He Y H, Zhang A X, Li M F, et al. High-resolution sub-sampling incoherent x-ray imaging with a single-pixel detector [J]. APL Photonics, 2020, 5(5): 056102. doi:  10.1063/1.5140322
[19] Yu H, Lu R, Han S, et al. Fourier-transform ghost imaging with hard X rays [J]. Physical Review Letters, 2016, 117(11): 113901. doi:  10.1103/PhysRevLett.117.113901
[20] Stantchev R I, Yu X, Blu T, et al. Real-time terahertz imaging with a single-pixel detector [J]. Nature Communications, 2020, 11(1): 2535. doi:  10.1038/s41467-020-16370-x
[21] Watts C M, Shrekenhamer D, Montoya J, et al. Terahertz compressive imaging with metamaterial spatial light modulators [J]. Nature Photonics, 2014, 8(8): 605-609. doi:  10.1038/nphoton.2014.139
[22] Stantchev R I, Sun B, Hornett S M, et al. Non-invasive, near-field terahertz imaging of hidden objects using a single pixel detector [J]. Science Advances, 2016, 2(6): e1600190. doi:  10.1126/sciadv.1600190
[23] Yan Y Q, Zhao C Q, Xu W D, et al. Research on terahertz active correlation imaging technology [J]. Chinese Journal of Lasers, 2018, 45(8): 280-287. (in Chinese)
[24] Cheng T, Li Z W, Wang J L, et al. Single-pixel camera imaging system using compressed sensing theory [J]. Optics and Precision Engineering, 2012, 20(11): 2523-2530. (in Chinese) doi:  10.3788/OPE.20122011.2523
[25] Peng J Y, Jing H Q, Shi J H, et al. High-speed single-pixel camera data acquisition system [J]. Optics and Precision Engineering, 2014, 22(4): 837-843. (in Chinese) doi:  10.3788/OPE.20142204.0837
[26] Sun M J, Zhang J M. Single-pixel imaging and its application in three-dimensional reconstruction: A brief review [J]. Sensors, 2019, 19(3): 732. doi:  10.3390/s19030732
[27] Li M F, Kan B X, Huo J, et al. Single-pixel imaging experiment through 34 km horizontal atmosphere [J]. Infrared and Laser Engineering, 2019, 48(9): 0925002. (in Chinese) doi:  10.3788/IRLA201948.0925002
[28] Lochocki B, Gambín A, Manzanera S, et al. Single pixel camera ophthalmoscope [J]. Optica, 2016, 3(10): 1056-1059. doi:  10.1364/OPTICA.3.001056
[29] Sun B Q, Wang Y P. Time-domain ghost imaging and its application [J]. Chinese Journal of Lasers, 2021, 48(12): 1212001. (in Chinese) doi:  10.3788/CJL202148.1212001
[30] Zhang Z B, Wang X Y, Zheng G A, et al. Hadamard single-pixel imaging versus Fourier single-pixel imaging [J]. Optics Express, 2017, 25(16): 19619-19639. doi:  10.1364/OE.25.019619
[31] Phillips D B, Sun M J, Taylor J M, et al. Adaptive foveated single-pixel imaging with dynamic supersampling [J]. Science Advances, 2017, 3(4): 1601782. doi:  10.1126/sciadv.1601782
[32] Redding B, Choma M A, Cao H. Speckle-free laser imaging using random laser illumination [J]. Nature Photonics, 2012, 6(6): 355-359. doi:  10.1038/nphoton.2012.90
[33] Schechner Y, Nayar S K, Belhumeur P N. Multiplexing for optimal lighting [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2007, 29(8): 1339-1354.
[34] Yan S M, Sun M J, Chen W, et al. Illumination calibration for computational ghost imaging [J]. Photonics, 2021, 8(2): 59. doi:  10.3390/photonics8020059
[35] Kohler R J, Howell H K. Photographic image enhancement by superposition of multiple images [J]. Photogr Sci Eng, 1963, 7(4): 241-245.
[36] Sun M J, Edgar M P, Gibson G M, et al. Single-pixel three-dimensional imaging with time-based depth resolution [J]. Nature Communications, 2016, 7: 12010. doi:  10.1038/ncomms12010
[37] Sun M J, Meng L T, Edgar M P, et al. A russian dolls ordering of the hadamard basis for compressive single-pixel imaging [J]. Scientific Reports, 2017, 7(1): 3464. doi:  10.1038/s41598-017-03725-6