[1] Jiang W, Zheng T, Wu B, et al. A versatile photodetector assisted by photovoltaic and bolometric effects [J]. Light: Science & Applications, 2020, 9(1): 160-160.
[2] Long M, Wang P, Fang H, et al. Progress, challenges, and opportunities for 2D material based photodetectors [J]. Advanced Functional Materials, 2019, 29(19): 1803807. doi:  10.1002/adfm.201803807
[3] Wang J, Han J, Chen X, et al. Design strategies for two-dimensional material photodetectors to enhance device performance [J]. InfoMat, 2019, 1(1): 33-53. doi:  10.1002/inf2.12004
[4] Fang J, Zhou Z, Xiao M, et al. Recent advances in low-dimensional semiconductor nanomaterials and their applications in high-performance photodetectors [J]. InfoMat, 2020, 2(2): 291-317. doi:  10.1002/inf2.12067
[5] Rezaei M, Bianconi S, Lauhon L J, et al. A new approach to designing high-sensitivity low-dimensional photodetectors [J]. Nano Letters, 2021, 21(23): 9838-9844. doi:  10.1021/acs.nanolett.1c03665
[6] Zhang M, Liu X, Duan X, et al. Schottky-contacted WSe2 hot-electron photodetectors with fast response and high sensitivity [J]. ACS Photonics, 2022, 9(1): 132-137. doi:  10.1021/acsphotonics.1c01256
[7] Xu Y, Liu C, Guo C, et al. High performance near infrared photodetector based on in-plane black phosphorus p-n homojunction [J]. Nano Energy, 2020, 70(1): 104518.
[8] Chen Y, Ma W, Tan C, et al. Broadband Bi2O2Se photodetectors from infrared to terahertz [J]. Advanced Functional Materials, 2021, 31(14): 2009554. doi:  10.1002/adfm.202009554
[9] Liu D, Liu F, Liu Y, et al. Schottky-contacted high-performance GaSb nanowires photodetectors enabled by lead-free all-inorganic perovskites decoration [J]. Small, 2022, 18(16): 2200415. doi:  10.1002/smll.202200415
[10] Yin Y, Guo Y, Liu D, et al. Substrate-free chemical vapor deposition of large-scale III-V nanowires for high-performance transistors and broad-spectrum photodetectors [J]. Advanced Optical Materials, 2022, 10(6): 2102291. doi:  10.1002/adom.202102291
[11] Sun J, Han M, Peng M, et al. Stoichiometric effect on electrical and near-infrared photodetection properties of full-composition-range GaAs1-xSbx nanowires [J]. Nano Research, 2021, 14(11): 3961-3968. doi:  10.1007/s12274-021-3321-3
[12] Sun J, Peng M, Zhang Y, et al. Ultrahigh hole mobility of Sn-catalyzed GaSb nanowires for high speed infrared photodetectors [J]. Nano Letters, 2019, 19(9): 5920-5929. doi:  10.1021/acs.nanolett.9b01503
[13] Wang J, Fang H, Wang X, et al. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared [J]. Small, 2017, 13(35): 1700894. doi:  10.1002/smll.201700894
[14] Wang X, Wang P, Wang J, et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics [J]. Advanced Materials, 2015, 27(42): 6575-6581. doi:  10.1002/adma.201503340
[15] Zheng D, Wang J, Hu W, et al. When nanowires meet ultrahigh ferroelectric field-high-performance full-depleted nanowire photodetectors [J]. Nano Letters, 2016, 16(4): 2548-2555. doi:  10.1021/acs.nanolett.6b00104
[16] Miao J, Hu W, Guo N, et al. High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios [J]. Small, 2015, 11(8): 936-942. doi:  10.1002/smll.201402312
[17] Fang H, Hu W, Wang P, et al. Visible light-assisted high-performance mid-infrared photodetectors based on single InAs nanowire [J]. Nano Letters, 2016, 16(10): 6416-6424. doi:  10.1021/acs.nanolett.6b02860
[18] Zhang X, Huang H, Yao X, et al. Ultrasensitive mid-wavelength infrared photodetection based on a single InAs nanowire [J]. ACS Nano, 2019, 13(3): 3492-3499. doi:  10.1021/acsnano.8b09649
[19] Yang Y, Wang X, Wang C, et al. Ferroelectric enhanced performance of a GeSn/Ge dual-nanowire photodetector [J]. Nano Letters, 2020, 20(5): 3872-3879. doi:  10.1021/acs.nanolett.0c01039
[20] Huang C, Li Y, Wang N, et al. Progress in research into 2D graphdiyne-based materials [J]. Chemical Reviews, 2018, 118(16): 7744-7803. doi:  10.1021/acs.chemrev.8b00288
[21] Manzeli S, Ovchinnikov D, Pasquier D, et al. 2D transition metal dichalcogenides [J]. Nature Reviews Materials, 2017, 2(8): 17033. doi:  10.1038/natrevmats.2017.33
[22] Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides [J]. Nature Nanotechnology, 2012, 7(11): 699-712. doi:  10.1038/nnano.2012.193
[23] Tu L, Cao R, Wang X, et al. Ultrasensitive negative capacitance phototransistors [J]. Nature Communications, 2020, 11(1): 101. doi:  10.1038/s41467-019-13769-z
[24] Sucharitakul S, Goble N J, Kumar U R, et al. Intrinsic electron mobility exceeding 103 cm2/(V s) in multilayer InSe FETs [J]. Nano Letters, 2015, 15(6): 3815-3819. doi:  10.1021/acs.nanolett.5b00493
[25] Wu F, Xia H, Sun H, et al. AsP/InSe Van der Waals tunneling heterojunctions with ultrahigh reverse rectification ratio and high photosensitivity [J]. Advanced Functional Materials, 2019, 29(12): 1900314. doi:  10.1002/adfm.201900314
[26] Liu L, Wu L, Wang A, et al. Ferroelectric-gated InSe photodetectors with high on/off ratios and photoresponsivity [J]. Nano Letters, 2020, 20(9): 6666-6673. doi:  10.1021/acs.nanolett.0c02448
[27] Bockelmann U, Bastard G. Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases [J]. Physical Review B, 1990, 42(14): 8947-8951. doi:  10.1103/PhysRevB.42.8947
[28] Zhang S, Jiao H, Wang X, et al. Highly sensitive InSb nanosheets infrared photodetector passivated by ferroelectric polymer [J]. Advanced Functional Materials, 2020, 30(51): 2006156. doi:  10.1002/adfm.202006156
[29] Sassi U, Parret R, Nanot S, et al. Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance [J]. Nature Communications, 2017, 8(1): 14311. doi:  10.1038/ncomms14311
[30] Wang X, Shen H, Chen Y, et al. Multimechanism synergistic photodetectors with ultrabroad spectrum response from 375 nm to 10 μm [J]. Advanced Science, 2019, 6(15): 1901050. doi:  10.1002/advs.201901050
[31] Yan J-M, Ying J-S, Yan M-Y, et al. Optoelectronic coincidence detection with two-dimensional Bi2O2Se ferroelectric field-effect transistors [J]. Advanced Functional Materials, 2021, 31(40): 2103982. doi:  10.1002/adfm.202103982
[32] Chen J-W, Lo S-T, Ho S-C, et al. A gate-free monolayer WSe2 pn diode [J]. Nature Communications, 2018, 9(1): 3147. doi:  10.1038/s41467-018-05599-2
[33] Wu G, Tian B, Liu L, et al. Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains [J]. Nature Electronics, 2020, 3(1): 43-50. doi:  10.1038/s41928-019-0350-y
[34] Wu G, Wang X, Chen Y, et al. MoTe2 p-n homojunctions defined by ferroelectric polarization [J]. Advanced Materials, 2020, 32(16): 1907937. doi:  10.1002/adma.201907937
[35] Chen Y, Wang X, Huang L, et al. Ferroelectric-tuned van der Waals heterojunction with band alignment evolution [J]. Nature Communications, 2021, 12(1): 4030. doi:  10.1038/s41467-021-24296-1