[1] Song Liyuan, Tang Libin, Hao Qun. Preparation, structure and properties of tin telluride and its research progress in infrared photodetection (Invited) [J]. Infrared and Laser Engineering, 2021, 50(1): 20211019. (in Chinese) doi:  10.3788/IRLA20211019
[2] Liang Jing, Zhou Liangliang, Li Bin, et al. Research on the preparation, structure and infrared properties of Sb2Te3 quantum dots [J]. Infrared and Laser Engineering, 2020, 49(1): 0103002. (in Chinese)
[3] Yang Qi, Shen Jun, Wei Xingzhan, et al. Recent progress on the mechanism and device structure of graphene-based infrared detectors [J]. Infrared and Laser Engineering, 2020, 49(1): 0103003. (in Chinese)
[4] Won Y H, Cho O, Kim T, et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes [J]. Nature, 2019, 575(7784): 634-638. doi:  10.1038/s41586-019-1771-5
[5] Li L, Reiss P. One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection [J]. Journal of the American Chemical Society, 2008, 130(35): 11588-11589. doi:  10.1021/ja803687e
[6] Zheng Yunhao, Han Xiao, Xu Jialiang. Recent progress in nonlinear optics of 2 D organic-inorganic hybrid perovskites (Invited) [J]. Infrared and Laser Engineering, 2020, 49(12): 20201063. (in Chinese) doi:  10.3788/IRLA20201063
[7] Pal K, Aljabali A A, Kralj S, et al. Graphene-assembly liquid crystalline and nanopolymer hybridization: A review on switchable device implementations [J]. Chemosphere, 2021, 263: 128104. doi:  10.1016/j.chemosphere.2020.128104
[8] Shen X, Zheng Q B, Kim J K. Rational design of two-dimensional nanofillers for polymer nanocomposites toward multifunctional applications [J]. Progress in Materials Science, 2021, 115: 100708. doi:  10.1016/j.pmatsci.2020.100708
[9] Zhou Jianhui, Cheng Chunfu, Fan Yang, et al. Preparation and properties of novel highly flexible and stretchable conductive film electrode [J]. Optics and Precision Engineering, 2019, 27(9): 2062-2069. (in Chinese) doi:  10.3788/OPE.20192709.2062
[10] Ni Bijun, Fu Chao, Pan Shuang, et al. Semiconducting spaghetti-like organic–inorganic nanojunctions via sequential self-assembly of conjugated polymers and quantum dots [J]. Chemistry of Materials, 2022, 34(2): 847-853. doi:  10.1021/acs.chemmater.1c03914
[11] Laysandra L, Kurniawan D, Wang C L, et al. Synergistic effect in a graphene quantum dot-enabled luminescent skinlike copolymer for long-term pH detection [J]. ACS Applied Materials & Interfaces, 2021, 13(50): 60413-60424.
[12] Ahmadi M, Zabihi O, Jeon S, et al. 2 D transition metal dichalcogenide nanomaterials: Advances, opportunities, and challenges in multi-functional polymer nanocomposites [J]. Journal of Materials Chemistry A, 2020, 8(3): 845-883. doi:  10.1039/C9TA10130F
[13] Li Bin, Chen Xingfan, Liang Jing, et al. CoTe2 QDs: preparation, structure and optical properties (Invited) [J]. Infrared and Laser Engineering, 2021, 50(1): 20211021. (in Chinese) doi:  10.3788/IRLA20211021
[14] Samadi M, Sarikhani N, Zirak M, et al. Group 6 transition metal dichalcogenide nanomaterials: Synthesis, applications and future perspectives [J]. Nanoscale Horizons, 2018, 3(2): 90-204. doi:  10.1039/C7NH00137A
[15] Kalita H, Palaparthy V S, Baghini M S, et al. Electrochemical synthesis of graphene quantum dots from graphene oxide at room temperature and its soil moisture sensing properties [J]. Carbon, 2020, 165: 9-17. doi:  10.1016/j.carbon.2020.04.021
[16] Ma Chunyang, Yang Dewei, Du Kaixiang, et al. Preparation and spectral characteristics of few-layer molybdenum disulfide thin films [J]. Semiconductor Materials, 2020, 45(9): 713-717.
[17] Zhou Liangliang, Sun Chuli, Li Xueming, et al. Tantalum disulfide quantum dots: preparation, structure, and properties [J]. Nanoscale Research Letters, 2020, 15(1): 1-8. doi:  10.1186/s11671-019-3237-y
[18] Mandal A, Saha J, De G. Stable CdS QDs with intense broadband photoluminescence and high quantum yields [J]. Optical Materials, 2011, 34(1): 6-11. doi:  10.1016/j.optmat.2011.07.019
[19] Liu Feng, Zhang Yaohong, Ding Chao, et al. Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield [J]. ACS Nano, 2017, 11(10): 10373-10383. doi:  10.1021/acsnano.7b05442
[20] Zhou Liangliang, Wu Hongbo, Li Xueming, et al. ZrS2 quantum dots: preparation, structure, and optical properties [J]. Acta Physica Sinica, 2019, 68: 148501. doi:  10.7498/aps.68.20190680
[21] Leng Meiying, Chen Zhengwu, Yang Ying, et al. Lead-free, blue emitting bismuth halide perovskite quantum dots [J]. Angewandte Chemie International edtion in English, 2016, 55(48): 15012-15016. doi:  10.1002/anie.201608160
[22] Zhou Liangliang, Liang Jing, Li Xueming, et al. Preparation and photoluminescence properties of rhenium disulfide quantum dots [J]. Journal of Yunnan Normal University, 2019, 39(2): 20-24. (in Chinese)
[23] Xu Quan, Ding Lan, Wen Yangyang, et al. High photo-luminescence quantum yield of 18.7% by using nitrogen-doped Ti3C2 MXene quantum dots [J]. Journal of Materials Chemistry C, 2018, 6(24): 6360-6369. doi:  10.1039/C8TC02156B
[24] Jang E P, Han C Y, Lim S W, et al. Synthesis of alloyed ZnSeTe quantum dots as bright, color-pure blue emitters [J]. ACS Applied Materials & Interfaces, 2019, 11(49): 46062-46069.
[25] Müller M, Kaiser M, Stachowski G M, et al. Photoluminescence quantum yield and matrix-induced luminescence enhancement of colloidal quantum dots embedded in ionic crystals [J]. Chemistry of Materials, 2014, 26(10): 3231-3237. doi:  10.1021/cm5009043
[26] Yang Weiqiang, Gao Fei, Qiu Yue, et al. CsPbBr3-Quantum-Dots/polystyrene@silica hybrid microsphere structures with significantly improved stability for white LEDs [J]. Advanced Optical Materials, 2019: 1900546. doi:  10.1002/adom.201900546
[27] Zheng Biyuan, Zheng Weihao, Jiang Ying, et al. WO3–WS2 vertical bilayer heterostructures with high photoluminescence quantum yield [J]. Journal of the American Chemical Society, 2019, 141(30): 11754-11758. doi:  10.1021/jacs.9b03453
[28] David H, Noah B, Brent K, et al. Redefining near-unity luminescence in quantum dots with photothermal threshold quantum yield [J]. Science, 2019, 363: 1192-1202.
[29] Hinds S, Myrskog S, Levina L, et al. NIR-emitting colloidal quantum dots having 26% luminescence quantum yield in buffer solution [J]. Journal of the American Chemical Society, 2007, 129(23): 7218-7219. doi:  10.1021/ja070525s
[30] Gelloz B, Juangsa F B, Nozaki T, et al. Si/SiO2 core/shell luminescent silicon nanocrystals and porous silicon powders with high quantum yield, long lifetime, and good stability [J]. Frontiers in Physics, 2019, 7: 47. doi:  10.3389/fphy.2019.00047
[31] Shrestha A, Batmunkh M, Tricoli A. Near-infrared active lead chalcogenide quantum dots: Preparation, post-synthesis ligand exchange and applications in solar cells [J]. Angewandte Chemie International edtion in English, 2019, 58(16): 5202-5224. doi:  10.1002/anie.201804053
[32] Hishimone P N, Nagai H, Sato M. Methods of Fabricating Thin Films for Energy Materials and Devices[M]//Sato M, Lu L, Nagai H. Lithium-ion Batteries-Thin Film for Energy Materials and Devices. London, United Kingdom: IntechOpen, 2020. (2020-07-08)[2021-09-02]. https://www.intechopen.com/chapters/70339.
[33] Lin Li, Deng Bing, Sun Jingyu, et al. Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene [J]. Chemical Reviews, 2018, 118(18): 9281-9343. doi:  10.1021/acs.chemrev.8b00325
[34] Öberg V A, Zhang X, Johansson M B, et al. Hot-injection synthesized Ag2S quantum dots with broad light absorption and high stability for solar cell applications [J]. Chemistry of Nanomaterials for Energy, Biology and More, 2018, 4(12): 1223-1230.
[35] Xin Yumeng, Zhao Hongjie, Zhang Jiuyang. Highly stable and luminescent perovskite–polymer composites from a convenient and universal strategy [J]. ACS Applied Materials & Interfaces, 2018, 10(5): 4971-4980.
[36] Zhao Xun, Wang Ailin, Gao Sili, et al. Enhancing photoluminescence of carbon quantum dots doped PVA films with randomly dispersed silica microspheres [J]. Scientific Reports, 2020, 10(1): 5710. doi:  10.1038/s41598-020-62563-1
[37] Şen F B, Beğiç N, Bener M, et al. Fluorescence turn-off sensing of TNT by polyethylenimine capped carbon quantum dots [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2022, 271: 120884.
[38] Wu Junrui, He Jun, Yin Kai, et al. Robust hierarchical porous PTFE film fabricated via femtosecond laser for self-cleaning passive cooling [J]. Nano Letters, 2021, 21(10): 4209-4216. doi:  10.1021/acs.nanolett.1c00038
[39] Wong Y C, Ng J D A, Tan Z K. Perovskite-Initiated photopolymerization for singly dispersed luminescent nanocomposites [J]. Advanced Materials, 2018, 30(21): e1800774. doi:  10.1002/adma.201800774
[40] Huang Yanni, Liu Jianjun, Yu Yingchun, et al. Preparation and multicolored fluorescent properties of CdTe quantum dots/polymethylmethacrylate composite films [J]. Journal of Alloys and Compounds, 2015, 647: 578-584. doi:  10.1016/j.jallcom.2015.05.230
[41] Hill S K E, Connell R, Held J, et al. Poly(methyl methacrylate) films with high concentrations of silicon quantum dots for visibly transparent luminescent solar concentrators [J]. ACS Applied Materials & Interfaces, 2020, 12(4): 4572-4578.
[42] Mahmoud W E. Structure and optoelectronic properties of PbSe quantum dots /PVA. Does the polymer molecular weight matter? [J]. Polymers for Advanced Technologies, 2011, 22(12): 2550-2555. doi:  10.1002/pat.1799
[43] Horti N C, Kamatagi M D, Patil N R, et al. Synthesis and photoluminescence properties of polycarbazole/tin oxide (PCz/SnO2) polymer nanocomposites [J]. Polymer Bulletin, 2020, 78: 6321-6336.
[44] Ensafi A A, Nasr-Esfahani P, Rezaei B. Synthesis of molecularly imprinted polymer on carbon quantum dots as an optical sensor for selective fluorescent determination of promethazine hydrochloride [J]. Sensors and Actuators B:Chemical, 2018, 257: 889-896. doi:  10.1016/j.snb.2017.11.050
[45] Mary Vijila C V, Rajeev Kumar K, Jayaraj M K. Stokes shift engineered, stable core-shell perovskite nanoparticle – Poly(methyl methacrylate) composites with high photo-luminescence quantum yield [J]. Optical Materials, 2019, 94: 241-248. doi:  10.1016/j.optmat.2019.05.046
[46] Kovalchuk A, Huang K, Xiang C, et al. Luminescent polymer composite films containing coal-derived graphene quantum dots [J]. ACS Applied Materials & Interfaces, 2015, 7(47): 26063-26068.
[47] Stan C S, Secula M S, Sibiescu D. Highly luminescent polystyrene embedded CdSe quantum dots obtained through a modified colloidal synthesis route [J]. Electronic Materials Letters, 2012, 8(3): 275-281. doi:  10.1007/s13391-012-1108-0
[48] Tong Lili, Wang Xiuxiu, Chen Zhenzhen, et al. One-step fabrication of functional carbon dots with 90% fluorescence quantum yield for long-term lysosome imaging [J]. Analytical Chemistry, 2020, 92(9): 6430-6436. doi:  10.1021/acs.analchem.9b05553
[49] Cao Xiaodong, Li Changming, Bao Haifeng, et al. Fabrication of strongly fluorescent quantum dot-polymer composite in aqueous solution [J]. Chemistry Materials, 2007, 19: 3773-3779. doi:  10.1021/cm070898s
[50] Zhang Shuaifeng, Wang Qian, Li Chenyue, et al. Fluorescence enhancement of quantum dots from the titanium dioxide/liquid crystals/polymer composite films [J]. Liquid Crystals, 2020, 2: 1-14.
[51] Yang K P, Yoon C, Um K. Fabrication of quantum dot-polymer nanocomposite using amphiphilic polymer-encapsulation of quantum dots [J]. Journal of the Society for Information Display, 2019: 1673-1674.
[52] Seo J, Cho M J, Lee D, et al. Efficient heterojunction photovoltaic cell utilizing nanocomposites of lead sulfide nanocrystals and a low-bandgap polymer [J]. Advanced Materials, 2011, 23(34): 3984-3988. doi:  10.1002/adma.201101912
[53] Cha W, Kim H, Lee S, et al. Size-controllable and stable organometallic halide perovskite quantum dots/polymer films [J]. Journal of Materials Chemistry C, 2017, 5(27): 6667-6671. doi:  10.1039/C7TC01562C
[54] Lü Changli, Gao Junfang, Fu Yuqin, et al. A ligand exchange route to highly luminescent surface-functionalized ZnS nanoparticles and their transparent polymer nanocomposites [J]. Advanced Functional Materials, 2008, 18(19): 3070-3079. doi:  10.1002/adfm.200800452
[55] Vega-Mayoral V, Backes C, Hanlon D, et al. Photoluminescence from liquid-exfoliated WS2 monomers in poly(vinyl alcohol) polymer composites [J]. Advanced Functional Materials, 2016, 26(7): 1028-1039. doi:  10.1002/adfm.201503863
[56] Venkatakrishnarao D, Sahoo C, Vattikunta R, et al. 2 D arrangement of polymer microsphere photonic cavities doped with novel N-Rich carbon quantum dots display enhanced one- and two-photon luminescence driven by optical resonances [J]. Advanced Optical Materials, 2017, 5(22): 1700695. doi:  10.1002/adom.201700695
[57] Tan M C, Patil S D, Riman R E. Transparent infrared-emitting CeF3: Yb-Er polymer nanocomposites for optical applications [J]. ACS Applied Materials & Interfaces, 2010, 2(7): 1884-1891.
[58] Shahiduzzaman M, Muslih E Y, Hasan A K M, et al. The benefits of ionic liquids for the fabrication of efficient and stable perovskite photovoltaics [J]. Chemical Engineering Journal, 2021, 411: 128461. doi:  10.1016/j.cej.2021.128461
[59] Meng Chao, Yu Shaoliang, Wang Hongqing, et al. Graphene-doped polymer nanofibers for low-threshold nonlinear optical waveguiding [J]. Light: Science & Applications, 2015, 4(11): e348.
[60] Cosgun A, Fu R, Jiang W, et al. Flexible quantum dot–PVA composites for white LEDs [J]. Journal of Materials Chemistry C, 2015, 3(2): 257-264. doi:  10.1039/C4TC02256D
[61] Song S, Shim H, Lim S K, et al. Patternable and widely colour-tunable elastomer-based electroluminescent devices [J]. Scientific Reports, 2018, 8(1): 3331. doi:  10.1038/s41598-018-21726-x
[62] Kim J T, Choi H, Shin E, et al. Graphene-based optical waveguide tactile sensor for dynamic response [J]. Scientific Reports, 2018, 8(1): 16118. doi:  10.1038/s41598-018-34613-2
[63] Li Pengwei, Liang Chao, Zhang Yiqiang, et al. Polyethyleneimine high-energy hydrophilic surface interfacial treatment toward efficient and stable perovskite solar cells [J]. ACS Applied Materials & Interfaces, 2016, 8(47): 32574-32580.
[64] Ghimire S, Sivadas A, Yuyama K I, et al. Quantum dot-polymer conjugates for stable luminescent displays [J]. Nanoscale, 2018, 10(28): 13368-13374. doi:  10.1039/C8NR01501E
[65] Deorukhkar O A, Radhakrishnan S, Munde Y S, et al. Polymer Nanocomposites: Polymer Composites: Design, Manufacturing, and Applications[M]. Boca Raton: CRC Press, 2021.
[66] Varghese A A, Kuriakose E, Jose J, et al. Investigations on the electronic properties and effect of chitosan capping on the structural and optical properties of zinc aluminate quantum dots [J]. Applied Surface Science, 2022, 579: 152162. doi:  10.1016/j.apsusc.2021.152162
[67] Zhang Wei, He Xiwen, Chen Yang, et al. Composite of CdTe quantum dots and molecularly imprinted polymer as a sensing material for cytochrome c [J]. Biosens and Bioelectron, 2011, 26(5): 2553-2558. doi:  10.1016/j.bios.2010.11.004
[68] Yin Jinpeng, Yu Jiayao, Shi Xiaorong, et al. TiO2 quantum dots confined in 3 D carbon framework for outstanding surface lithium storage with improved kinetics [J]. Journal of Colloid and Interface Science, 2021, 582: 874-882. doi:  10.1016/j.jcis.2020.08.076
[69] Stoffer J O, Bone T. Polymerization in water-in-oil microemulsion systems. I [J]. Journal of Polymer Science: Polymer Chemistry Edition, 1980, 18(8): 2641-2648. doi:  10.1002/pol.1980.170180822
[70] Chen Dandan, Yuan Ye, Yu Jiangbo, et al. Purification of semiconducting polymer dots by size exclusion chromatography prior to cytotoxicity assay and stem cell labeling [J]. Analytical Chemistry, 2018, 90(9): 5569-5575. doi:  10.1021/acs.analchem.8b00095
[71] Liu Mingxian, Gan Lihua, Pang Yingcong, et al. Synthesis of titania–silica aerogel-like microspheres by a water-in-oil emulsion method via ambient pressure drying and their photocatalytic properties [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 317(1): 490-495.
[72] Harun N A, Benning M J, Horrocks B R, et al. Gold nanoparticle-enhanced luminescence of silicon quantum dots co-encapsulated in polymer nanoparticles [J]. Nanoscale, 2013, 5(9): 3817-3827. doi:  10.1039/c3nr00421j
[73] Wei Ziye, Gao Hongzhi, Fu Guoshuai, et al. Construction of GQDs-decorated ultrathin Bi2WO6 nanosheets hydrogel: A recyclable-flexible platform with excellent piezo-photocatalytic activity for high-performance water decontamination and its theoretical interpretation [J]. Particle & Particle Systems Characterization, 2021, 38(12): 2100198.
[74] Tchernook A, Krumova M, Tölle F J, et al. Composites from aqueous polyethylene nanocrystal/graphene dispersions [J]. Macromolecules, 2014, 47(9): 3017-3021. doi:  10.1021/ma500394r
[75] Park J P, Kim T H, Kim S W. Highly stable Cd free quantum dot/polymer composites and their WLED application [J]. Dyes and Pigments, 2016, 127: 142-147. doi:  10.1016/j.dyepig.2015.12.029
[76] Mallakpour S, Barati A. Efficient preparation of hybrid nanocomposite coatings based on poly(vinyl alcohol) and silane coupling agent modified TiO2 nanoparticles [J]. Progress in Organic Coatings, 2011, 71(4): 391-398. doi:  10.1016/j.porgcoat.2011.04.010
[77] Lin Yue, Jin Jie, Song Mo. Preparation and characterisation of covalent polymer functionalized graphene oxide [J]. Journal of Materials Chemistry, 2011, 21(10): 3455-3461. doi:  10.1039/C0JM01859G
[78] Xu Quan, Kuang Tairong, Liu Yao, et al. Heteroatom-doped carbon dots: Synthesis, characterization, properties, photoluminescence mechanism and biological applications [J]. Journal of Materials Chemistry B, 2016, 4(45): 7204-7219. doi:  10.1039/C6TB02131J
[79] Ye Yun, Yu Jinhui, Lin Shuyan, et al. Progress of quantum dot backlight technology [J]. Chinese Optics, 2020, 13(1): 14-27. (in Chinese) doi:  10.3788/co.20201301.0014
[80] Chen Zhaoping, Zhao Jialong, Zeng Ruosheng, et al. High efficiency fluorescent perovskite quantum dots encapsulated in superhydrophobic silica aerogel for wide color gamut backlight displays [J]. Chemical Engineering Journal, 2021, 433(2): 133195.
[81] Zhuge Minghua, Pan Caofeng, Zheng Yazhi, et al. Wavelength‐tunable micro/nanolasers [J]. Advanced Optical Materials, 2019, 7(17): 1900275. doi:  10.1002/adom.201900275
[82] Sara G R, Íñigo S, Rolindes B, et al. Two-photon pumped random lasing in a dye-doped silica gel powder [C]//SPIE, 2010, 7598: 759804.
[83] Wang Y, Ta V D, Leck K S, et al. Robust whispering-gallery-mode microbubble lasers from colloidal quantum dots [J]. Nano Letters, 2017, 17(4): 2640-2646. doi:  10.1021/acs.nanolett.7b00447
[84] Wan Lei, Chen Cong, Zhu Junfeng, et al. Changes in optical characteristics induced by polymer blending in printed colloidal quantum dots microlasers [J]. Optics Express, 2019, 27(14): 19615-19623. doi:  10.1364/OE.27.019615
[85] Chen C J, Lin C C, Lien J Y, et al. Preparation of quantum dot/polymer light conversion films with alleviated Förster resonance energy transfer redshift [J]. Journal of Materials Chemistry C, 2015, 3(1): 196-203. doi:  10.1039/C4TC02201G
[86] Acharya K P, Titov A, Hyvonen J, et al. High efficiency quantum dot light emitting diodes from positive aging [J]. Nanoscale, 2017, 9(38): 14451-14457. doi:  10.1039/C7NR05472F
[87] Li Xiang, Wen Zuoliang, Ding Shihao, et al. Facile in situ fabrication of Cs4PbBr6/CsPbBr3 nanocomposite containing polymer films for ultrawide color gamut displays [J]. Advanced Optical Materials, 2020, 8(13): 2000232. doi:  10.1002/adom.202000232
[88] Kwak J, Bae W K, Zorn M, et al. Characterization of quantum dot/conducting polymer hybrid films and their application to light-emitting diodes [J]. Advanced Materials, 2009, 21(48): 5022-5026. doi:  10.1002/adma.200902072
[89] Xuan Tongtong, Huang Junjian, Liu Huan, et al. Super-hydrophobic cesium lead halide perovskite quantum dot-polymer composites with high stability and luminescent efficiency for wide color gamut white light-emitting diodes [J]. Chemistry of Materials, 2019, 31(3): 1042-1047. doi:  10.1021/acs.chemmater.8b04596
[90] Peng Xiaodong, Yan Cheng, Chun Fengjun, et al. Liquid nitrogen passivation for deep-blue perovskite quantum dots with nearly unit quantum yield [J]. The Journal of Physical Chemistry C, 2022, 126(2): 1017-1025. doi:  10.1021/acs.jpcc.1c08765
[91] Feng Qibin, Xiao Huili, Yang Ling, et al. Design of optical film for ultra-thin MiniLED backlight modules [J]. Optics and Precision Engineering, 2021, 29(11): 2548-2555. (in Chinese) doi:  10.37188/OPE.2021.0239
[92] Liu Zhaojun, Hyun Byung-Ryool, Sheng Yujia, et al. Micro-light-emitting diodes based on InGaN materials with quantum dots [J]. Advanced Materials Technologies, 2021: 2101189. doi:  10.1002/admt.202101189
[93] Li Chao, Huang Weichun, Gao Lingfeng, et al. Recent advances in solution-processed photodetectors based on inorganic and hybrid photo-active materials [J]. Nanoscale, 2020, 12(4): 2201-2227. doi:  10.1039/C9NR07799E
[94] Chen H Y, Lo M K, Yang G, et al. Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene [J]. Nature Nanotechnology, 2008, 3(9): 543-547. doi:  10.1038/nnano.2008.206
[95] Guo Fawen, Yang Bin, Yuan Yongbo, et al. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection [J]. Nature Nanotechnology, 2012, 7(12): 798-802. doi:  10.1038/nnano.2012.187
[96] Wei Haotong, Fang Yanjun, Yuan Yongbo, et al. Trap engineering of CdTe nanoparticle for high gain, fast response, and low noise P3 HT: CdTe nanocomposite photodetectors [J]. Advanced Materials, 2015, 27(34): 4975-4981. doi:  10.1002/adma.201502292
[97] Sadasivan S, Bausemer K, Corliss S, et al. 27-1: Invited paper: performance benchmarking of wide color gamut televisions and monitors [J]. SID Symposium Digest of Technical Papers, 2016, 47(1): 333-335. doi:  10.1002/sdtp.10672