[1]
[2] Rogan John, Jennifer Miller, Doug Stow, et al. Land-Cover change monitoring with classification trees using landsat tm and ancillary data[J]. Photogrammetric Engineering Remote Sensing, 2003, 69 (7): 793-804.
[3]
[4] Gong P, Pu R, Biging G S, et al. Estimation of forest leaf area index using vegetation indices derived from hyperion hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(6): 1355-1362.
[5] Boggs G S. Assessment of SPOT 5 and QuickBird remotely sensed imagery for mapping tree cover in savannas[J]. International Journal of Applied Earth Observation and Geoinformation, 2010, 12: 217-224.
[6]
[7]
[8] Zhang X, Feng X, Jiang H. Object-oriented method for urban vegetation mapping using IKONOS imagery[J]. International Journal of Remote Sensing, 2010, 31(1): 177-196.
[9] Yang M, Zhao C, Zhao Y, et al. Research on a method to derive wheat canopy information from airborne imaging spectrometer data[J]. Scientia Agricultura Sinica, 2002, 35(6): 626-631.
[10]
[11]
[12] Kumara A S, Keerthi V, Manjunath A S, et al. Hyperspectral image classification by a variable interval spectral average and spectral curve matching combined algorithm[J]. International Journal of Applied Earth Observation and Geoinformation, 2010, 12: 261-269.
[13]
[14] Martin D P, Rybicki E P. Microcomputer-based quantification of maize streak virus symptoms in Zea mays[J]. Phytopathology, 1998, 88(5): 422-427.
[15]
[16] Lukina E V, Stone M L, Raun W R. Estimating vegetation coverage in wheat using digital images[J]. Journal of Plant Nutrition, 1999, 22(2): 341-350.
[17]
[18] Ahmad I S, Reid J F, Paulsen M R, et al. Color classifier for symptomatic soybean seeds using image processing[J]. Plant Disease, 1999, 83(4): 320-327.
[19] Shi Y, Deng J, Chen L, et al. Leaf characteristics extraction of rice under potassium stress based on static scan and spectral segmentation technique[J]. Spectroscopy and Spectral Analysis, 2010, 30(1): 214-219.
[20]
[21]
[22] Scharf P C, Lory J A. Calibrating corn color from aerial photographs to predict sidedress N need [J]. Agronomy Journal, 2002, 94: 397-404.
[23]
[24] Jia L, Chen X, Zhang F, et al. To detect nitrogen status of inter wheat by using color digital camera [J]. J Plant Nutrition, 2004, 27(3): 441-450.
[25]
[26] Tong Q, Xue Y, Wang J, et al. Development and application of the field imaging spectrometer system [J]. Journal of Remote Sensing, 2010, 14(3): 409-422.
[27] Zhang D Y, Liu L Y, Huang W J, et al. Inversion and evaluation of crop chlorophyll density based on analyzing image and spectrum[J]. Infrared and Laser Engineering, 2013, 42(7): 1871-1181.
[28]
[29] Christian Nansen, Tulio Macedo, Rand Swanson, et al. Use of spatial structure analysis of hyperspectral data cubes for detection of insect-induced stress in wheat plants [J]. International Journal of Remote Sensing, 2009, 30(10):2447-2464.
[30]
[31] Chai A, Liao N, Tian L. Identification of cucumber disease using hyperspectral imaging and discriminate analysis[J]. Spectroscopy and Spectral Analysis, 2010, 30(5): 1357-1361.
[32]
[33]
[34] Inoue Y, Penuelas J. An AOTF-based hyperspectral imaging system for field use in ecophysiological and agricultural applications[J]. International Journal of Remote Sensing, 2001, 22(18): 3883-3888.
[35] Tan H, Li S, Wang K, et al. Monitoring canopy chlorophyll density in seedlings of winter wheat using imaging spectrometer[J]. Acta Agronomica Sinica, 2008, 34(10): 1812-1817.
[36]
[37] Zhang L, Huang C, Wu T, et al. Laboratory calibration of a field imaging spectrometer system [J]. Sensors, 2011, 11:2408-2425.
[38]
[39]
[40] Huang W. Remote sensing monitoring of crops diseases mechanism and application[J]. China's Agricultural Science and Technology Press, 2009: 18-24.
[41] Wang J, Zhao C, Huang W. Basis and Application of Quantitative Remote Sensing in Agriculture[M]. Beijing: Science Press, 2008: 5-11.
[42]
[43] Yu B I, Michael Ostland, Peng Gong. Penalized discriminant analysis of in situ hperspectral data for conifer species recognition[J]. IEEE Transactions on Geosciences and Remote Sensing, 1999, 5(37): 2569-2576.
[44]
[45]
[46] Pu R. Broadleaf species recognition with in situ hyperspectral data[J]. International Journal of Remote Sensing, 2009, 30: 2759-2779.
[47]
[48] Zhang D Y, Liang D, Zhao J L, et al. Bidirectional reflectance characteristics of soybean canopy using multi-angle hyperspectral imaging[J]. Infrared and Laser Engineering, 2013, 42(3): 787-797.
[49]
[50] Haboudane D, Tremblay N, Miller J R, et al. Remote estimation of crop chlorophyll content using spectral indices derived from hyperspecral data[J]. IEEE Transaction on Geoscience and Remote sensing, 2008, 46: 423-427.
[51]
[52] Gitelson A A, Kaufman Y, Merzlyak M. Use of a green channel in remote sensing of global vegetation from EOS-MODIS[J]. Remote Sensing of Environment, 1996, 58(3): 289-298.
[53] Hansen P M, Schjoerring J K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression[J]. Remote Sensing of Environment, 2003, 86: 542-553.
[54]
[55] Roshanak Darvishzadeh, Andrew Skidmore, Artin Chlerf, et al. Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in heterogeneous grassland[J]. Remote Sensing of Environment, 2008, 112: 2592-2604.
[56]
[57] Fig.4 Identified result of imagery classification