[1] Zhang Q Y, Huang X Y. Recent progress in quantum cutting phosphors [J]. Progress in Materials Science, 2010, 55: 353-427.
[2]
[3]
[4] Zheng W, Zhu H M, Li R F, et al. Visible-to-infrared quantum cutting by phonon-assisted energy transfer in YPO4:Tm3+,Yb3+ phosphors[J]. Phys Chem Chem Phys, 2012, 14: 6974-6980.
[5]
[6] Terra I A A, Borrero-Gonzlez L J, Carvalho J M, et al. Spectroscopic properties and quantum cutting in Tb3+Yb3+ co-doped ZrO2 nanocrystals [J]. J Appl Phys, 2013, 113: 073105.
[7]
[8] Lau M K, Hao J H. Near-infrared quantum cutting in Eu3+-Yb3+ co-doped YAG through downconversion for silicon solar Cell [J]. Energy Procedia, 2012, 15: 129-134.
[9] Wen H L, Tanner P A. Energy transfer and luminescence studies of Pr3+, Yb3+ co-doped lead borate glass [J]. Opt Mater, 2011, 33: 1602-1606.
[10]
[11]
[12] Zhou J J, Zhuang Y X, Ye S, et al. Broadband down conversion based infrared quantum cutting by cooperative energy transfer from Eu2+ to Yb3+ in glasses [J]. Appl Phys Lett, 2009, 95: 141101.
[13]
[14] Teng Y, Zhou J J, Liu X F, et al. Efficient broadband near-infrared quantum cutting for solar cells [J]. Opt Express, 2010, 18: 9671-9676.
[15] Liu X F, Teng Y, Zhuang Y X, et al. Broadband conversion of visible light to near-infrared emission by Ce3+, Yb3+ co-doped yttrium aluminum garnet [J]. Opt Lett, 2009, 34: 3565-3567.
[16]
[17]
[18] Ueda J, Tanabe S. Visible to near infrared conversion in Ce3+-Yb3+ Co-doped YAG ceramics [J]. J Appl Phys, 2009, 106: 043101.
[19]
[20] Gao B, Yan Q Q, Tong Y, et al. Highly efficient near-infrared quantum cutting in Ce3+/Yb3+ co-doped chalcohalide glasses [J]. J Lumin, 2013, 143: 181-184.
[21]
[22] Zhang H, Liu X Y, Zhao F Y, et al. Efficient visible to near-infrared energy transfer in Ce3+-Yb3+ co-doped Y2SiO5 phosphors [J]. Opt Mater, 2012, 34: 1034-1036.
[23]
[24] Chen J D, Zhang H, Li F, et al. High efficient near-infrared quantum cutting in Ce3+, Yb3+ co-doped LuBO3 phosphors [J]. Mater Chem Phys, 2011, 128: 191-194.
[25] Choi W C, Lee H N, Kim E K. Violet/blue light-emitting cerium silicates [J]. Appl Phys Lett, 1999, 75: 2389-2391.
[26]
[27] Li J, Zalloum O, Roschuk T, et al. The formation of light emitting cerium silicates in cerium-doped silicon oxides [J]. Appl Phys Lett, 2009, 94: 011112.
[28]
[29]
[30] Li J, Zalloum O H Y, Roschuk T, et al. Light emission from rare-earth doped silicon nanostructures [J]. Adva Opt Tech, 2008, 2008: 295601.
[31] Kepiński L, Hreniak D, Strek W. Microstructure and luminescence properties of nanocrystalline cerium silicates [J]. J Alloys Compd, 2002, 341: 203-207.
[32]
[33]
[34] Rebohle L, Borany J, Frb H, et al. Blue photo- and electroluminescence of silicon dioxide layers ion-implanted with group IV elements [J]. Appl Phys B, 2000, 71: 131-151.
[35] Sun J M, Prucnal S, Skorupa W, et al. Increase of blue electroluminescence from Ce-doped SiO2 layers through sensitization by Gd3+ ions [J]. Appl Phys Lett, 2006, 89: 091908.