[1] Strugarek D, Sonica K, Arnold D, et al. Determination of global geodetic parameters using satellite laser ranging measurements to Sentinel-3 satellites [J]. Remote Sensing, 2019, 11(2282): 1-21.
[2] Matthew W, Ulrich S, Ivan P, et al. The next generation of satellite laser ranging systems [J]. Journal of Geodesy, 2019, 93(11): 2227-2247. doi:  10.1007/s00190-018-1196-1
[3] José R, Appleby G, Otsubo T, et al. Upgraded modelling for the determination of centre of mass corrections of geodetic SLR satellites: impact on key parameters of the terrestrial reference frame [J]. Journal of Geodesy, 2019, 93(12): 2553-2568. doi:  10.1007/s00190-019-01315-0
[4] Song Qingli, Liang Zhipeng, Dong Xue, et al. High repetition rate laser ranging to space debris from Changchun Observatory [J]. Optics and Precision Engineering, 2016, 24(10s): 175-182. (in Chinese)
[5] Wen Guanyu, Wang Shuang, An Ning, et al. Analysis of aberration effect on high orbit satellite laser ranging [J]. Infrared and Laser Engineering, 2018, 47(9): 0906001. (in Chinese) doi:  0906001
[6] Kunimori H, Ishizu M, Araki Hi. Transmit/receive optical ranging system for long distance target [J]. Technical Report of Ieice Sane, 2012, 111(436): 7-12.
[7] Guo Tangyong, Tan Yechun, Li Cuixia, et al. Research on calibration of super short distance target in satellite laser ranging [J]. Journal of Geodesy and Geodynamics, 2001, 21(1): 90-94. (in Chinese)
[8] 刘源. 球形卫星高重复频率激光测距数据处理方法研究[D]. 长春: 中国科学院国家天文台长春人造卫星观测站, 2019: 23-27.

Liu Yuan. Research on data processing method of high frequency laser ranging of spherical satellite[D]. Changchun: Changchun Observatory, National Astronomical Observatories, Chinese Academy of Sciences, 2019: 23-27. (in Chinese)
[9] Samwel S W, Metwally Z, Mikhail J S, et al. Analyzing the range residuals of the SLR data using two different methods [J]. NRIAG Journal of Astronomy and Astrophysics, 2005, 4(1): 1-14.
[10] Zhao Nan, Xue Yu, Wang Jing. Analysis of stray radiation from infrared optical system with Monte-Carlo method [J]. Chinese Journal of Optics and Applied Optics, 2010, 3(6): 665-670. (in Chinese)
[11] Salih Y, Victor, Jun R O, et al. 2D Monte Carlo simulation of a silicon waveguide-based single-photon avalanche diode for visible wavelengths [J]. Optics Express, 2018, 26(12): 15232-15246. doi:  10.1364/OE.26.015232
[12] Drodewski M, Sonica K, Zus F, et al. Troposphere delay modeling with horizontal gradients for satellite laser ranging [J]. Journal of Geodesy, 2019, 93(8): 1-14.
[13] Li Ming, Xue Li, Huang Chen, et al. Estimation of detection range for space debris laser ranging system based on efficient echo probability [J]. Optics and Precision Engineering, 2016, 24(2): 260-267. (in Chinese) doi:  10.3788/OPE.20162402.0260
[14] Liu Chenghao, Chen Yunfei, He Jiwei, et al. Simulation and accuracy analysis of single photon ranging system [J]. Infrared and Laser Engineering, 2014, 43(2): 382-387. (in Chinese) doi:  10.3969/j.issn.1007-2276.2014.02.008
[15] 郑向阳. 运动条件下光子计数激光雷达数据处理技术研究[D]. 上海: 中国科学院上海技术物理研究所, 2016: 31-34.

Zheng Xiangyang. Research of data processing technology in photon counting LIDAR systems under movable conditions[D]. Shanghai: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 2016: 31-34. (in Chinese)
[16] Xu L, Zhang Y, Zhang Y, et al. Signal restoration method for restraining the range walk error of Geiger-mode avalanche photo diode lidar in acquiring a merged three-dimensional image [J]. Applied Optics, 2017, 56(11): 3059-3065. doi:  10.1364/AO.56.003059
[17] Liu Qun, Liu Chong, Zhu Xiaolei, et al. Analysis of the optimal operating wavelength of spaceborne oceanic lidar. [J]. Chinese Optics, 2020, 13(1): 148-155. (in Chinese) doi:  10.3788/CO.20201301.0148
[18] Xue W, Liu L, Dai X, et al. Moving target ranging method for a photon-counting system [J]. Optics Express, 2018, 26(26): 34161-34178. doi:  10.1364/OE.26.034161