[1] Nelson H F. Infrared radiation signature of tactical rocket exhausts [C]//St. Louis, Missouri: AIAA,AIAA/ASME 3rd Joint Thermophysics, Fluids, Plasma and Heat Transfer Conference, 1985: AIAA-82-0913.
[2]
[3]
[4] Rochelle W C. Review of thermal radiation from liquid and solid propellant rocket exhausts [R]. Huntsville: Marshall Space Flight Center, 1967: NASA TM X-53579.
[5]
[6] Devir A, Lessin A, Lev M, et al. Comparison of calculated and measured radiation from a rocket motor plume [C]// Reno, Nevada: AIAA,39th AIAA Aerospace Sciences Meeting Exhibit, 2001: 2001-0358.
[7]
[8] Duval R, Soufiani A, Taine J. Coupled radiation and turbulent multiphase flow in an aluminised solid propellant rocket engine [J]. Journal of Quantitative Spectroscopy Radiative Transfer, 2004, 84: 513-526.
[9]
[10] Jiang Yi, Fu Debin. Numerical simulation for non equilibrium chemically reacting fluid field of the solid rocket motor exhaust plume [J]. Journal of Astronautics, 2008, 29 (2): 615-620.
[11]
[12] Wang W, Wei Z, Zhang Q, et al. Study on infrared signature of solid rocket motor afterburning exhaust plume [C]// Nashville, TN: 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference Exhibit, 2010: AIAA 2010-6847.
[13] Wang W, Wei Z, Zhang Q, et al. Infrared radiation signature of exhaust plume from solid propellants of different energy characteristics[C]//San Diego, California: 47th AIAA/ASME/ SAE/ASEE Joint Propulsion Conference Exhibit, 2011: AIAA 2011-6140.
[14]
[15] Reardon J E, Lee Y C. A computer program for thermal radiation from gaseous rocket exhuast plumes(GASRAD)[R]. NASA-CR-161496, 1980:NASA-CR-161496.
[16]
[17]
[18] Ludwig C B, Malkmus W, Walker J. The standardized infrared radiation mode[C], 1981: AIAA-81-1051.
[19] Markarian P, Kosson R. Standardized Infrared Radiation Model (SIRRM-II) [R]. NY: Grumman Aerospace Corp, 1988: AFAL-87-098.
[20]
[21] Surzhikov S T. Monte Carlo Simulation of Plumes Spectral Emission [R]. Institute for Problems in Mechanics Russian Academy of Sciences(IPMech RAS), 2006:
[22]
[23] Shuai Y, Dong S K, Tan H P. Simulation of the infrared radiation characteristics of high-temperature exhaust plume including particles using the backward Monte Carlo method[J]. Journal of Quantitative Spectroscopy Radiative Transfer, 2005, 95: 231-240.
[24]
[25]
[26] Shuai Yong, Dong Shikui, Liu Linhua. Simulation of infrared radiation characteristics of high temperature free-stream flow including particles by using backward Monte Carlo method[J]. Journal of Infrared and Millimeter Waves, 2005, 24(2): 100-104.
[27]
[28] Shuai Yong, Dong Shikui, Tan Heping. Numerical simulation for infrared radiation characteristics of exhaust plume at 2.7 m [J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(4): 402-405.
[29]
[30] Cai G, Zhu D, Zhang X. Numerical simulation of the infrared radiative signatures of liquid and solid rocket plumes[J]. Aerospace Science and Technology, 2007(11): 473-480.
[31] Fan Shiwei, Zang Xiaoying, Zhu Dingqiang, et al. Calculation of the infrared characteristics of the solid rocket plume with FVM method[J]. Journal of Astronautics, 2005, 26(6): 794-797.
[32]
[33]
[34] Coelho P J. Fundamentals of a new method for the solution of the radiative transfer equation[J]. International Journal of Thermal Sciences, 2005, 44: 809-821.
[35]
[36] Zhang Xiaoying, Zhu Dingqiang, Cai Guobiao. Study the infrared characteristics of the solid rocket plume with DOM method and the influence of altitude [J]. Journal of Astronautics, 2007, 28(3): 702-706.
[37] Dong Shikui, Yu Jianguo, Li Donghui. Numerical modeling of infrared radiation properties of exhaust plume by the Discrete Ordinates Method in body-fitted coordinates [J]. Journal of University of Shanghai for Science and Technology, 2003, 25(2): 159-163.
[38]
[39]
[40] Edwards D K, Babikian D S. Radiation from a nongray scattering, emitting, and absorbing solid rocket motor plume[J]. J Thermophysics, 1990, 4(4): 446-453.
[41] Surzhikov S T. Three-dimensional model of the spectral emissivity of light-scattering exhaust plumes [J]. High Temperature, 2004, 42(5): 763-775.
[42]
[43] Hao Jinbo, Dong Shikui, Tan Heping. Numerical simulation of infrared radiation properties of solid rocket engine exhaust plume[J]. Journal of Infrared and Millimeter Waves, 2003, 22(4): 246-250.
[44]
[45] Nie Wansheng, Yang Junhui, He Haosheng, et al. The IR radiation characteristic of exhaust plume of the liquid rocket engine [J]. Journal of National University of Defense Technology, 2005, 27(5): 91-94.
[46]
[47]
[48] Feng S, Nie W, Xie Q, et al. Numerical simulation of flow field and radiation of an aluminized solid-opellant rocket multiphase exhaust plume [C]//Miami, FL: 39th AIAA Thermophysics Conference, 2007: AIAA 2007-4415.
[49]
[50] Dong Shikui, Tan Heping, Yu Qizheng, et al. Infrared radiative spectral band-model parameters for water vapor in the 300- 3000 K temperature range [J]. Journal of Engineering for Thermal Energy and Power, 2001, 16(1): 33-38.
[51] Dong Shikui, Yu Qizheng, Tan Heping, et al. Narrow band model parameters of high temperature radiation for carbon dioxide of combustion products [J]. Journal of Aerospace Power, 2001, 16(4): 355-359.
[52]
[53] Siegel R, Howell R J. Thermal Radiation Heat Transfer [M]. Washington D C: Hemisphere and McGraw-Hill, 1981.
[54]
[55]
[56] Nelson H F. Influence of participates on infrared emission from tactical rocket exhausts [J]. J Spacecraft, 1984, 21(5): 425-432.
[57]
[58] Simmons F S. Rocket Exhaust Plume Phenomenology [M]. EI Segundo: CA: The Aerospace Press and American Institute of Aeronautics and Astronautics, 2000.
[59] Zhang Guangming, Sun Shengli, Zhang Wei, et al. Model and application of image plane illumination for the space- based infrared detecting of boost-phase missile [J]. Journal of Infrared and Millimeter Waves, 2007, 26(6): 425-428.