[1] 佚名. Nimrud lens[Z/OL]. (2018–12–07)[2019–06–17].https://en.wikipedia.org/w/index.php?title=Nimrud_lens&oldid=872400603.
[2] 佚名. Huawei rewrites the rules of photography with ground-breaking huawei P30 series[EB/OL]. (2019-03-26)[2019–06–17]. https://consumer.huawei.com/en/press/news/2019/huawei-rewrites-the-rules-of-photography-with-the-new-p30-series/.
[3] 佚名. Computational imaging[Z/OL]. (2019–03–15)[2019–06–17]. https://en.wikipedia.org/w/index.php?title=Computational_imaging&oldid=887843699.
[4] KUBALA K, DOWSKI E, CATHEY W. Reducing complexity in computational imaging systems [J]. Optics Express, 2003, 11(18): 2102. doi:  10.1364/OE.11.002102
[5] MAIT J, ATHALE R, van der GRACHT J. Evolutionary paths in imaging and recent trends [J]. Optics Express, 2003, 11(18): 2093-2101. doi:  10.1364/OE.11.002093
[6] BIMBER O. Guest editor’s introduction: Computational photography-The next big step [J]. Computer, 2006, 39(8): 28-29. doi:  10.1109/MC.2006.261
[7] RASKAR R. Computational photography[C/OL]//Frontiers in Optics 2009/Laser Science XXV/Fall 2009 OSA Optics & Photonics Technical Digest, 2009: CTuA1. [2019–06–23].https://www.osapublishing.org/abstract.cfm?uri=COSI-2009-CTuA1.
[8] MAIT J N, EULISS G W, ATHALE R A. Computational imaging [J]. Advances in Optics and Photonics, 2018, 10(2): 409. doi:  10.1364/AOP.10.000409
[9] BRADY D J. Optical Imaging and Spectroscopy[M]. New Jersey: John Wiley & Sons, 2009.
[10] Computational imaging: Rethinking how we look at the world[J/OL]. [2019–06–26]. https://www.mitre.org/publications/project-stories/computational-imaging-rethinking-how-we-look-at-the-world.
[11] CATHEY W T, FRIEDEN B R, RHODES W T, et al. Image gathering and processing for enhanced resolution [J]. JOSA A, 1984, 1(3): 241-250. doi:  10.1364/JOSAA.1.000241
[12] MATIC R M, GOODMAN J W. Optimal pupil screen design for the estimation of partially coherent images [J]. JOSA A, 1987, 4(12): 2213-2227. doi:  10.1364/JOSAA.4.002213
[13] MATIC R M, GOODMAN J W. Comparison of optical predetection processing and postdetection linear processing for partially coherent image estimation [J]. Journal of the Optical Society of America A, 1989, 6(2): 213. doi:  10.1364/JOSAA.6.000213
[14] MATIC R M, GOODMAN J W. Optical preprocessing for increased system throughput [J]. JOSA A, 1989, 6(3): 428-440. doi:  10.1364/JOSAA.6.000428
[15] VELDKAMP W B. Wireless focal planes “On the road to amacronic sensors” [J]. IEEE Journal of Quantum Electronics, 1993, 29(2): 801-813. doi:  10.1109/3.199331
[16] DOWSKI E R, CATHEY W T. Extended depth of field through wave-front coding [J]. Applied Optics, 1995, 34(11): 1859-1866. doi:  10.1364/AO.34.001859
[17] van der GRACHT J, JR E R D, JR W T C, et al. Aspheric optical elements for extended depth-of-field imaging[C/OL]//Novel Optical Systems Design and Optimization. International Society for Optics and Photonics, 1995: 279–288. [2019–06–24]. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/2537/0000/Aspheric-optical-elements-for-extended-depth-of-field-imaging/10.1117/12.216392.short.
[18] van der GRACHT J, DOWSKI E R, TAYLOR M G, et al. Broadband behavior of an optical–digital focus-invariant system [J]. Optics Letters, 1996, 21(13): 919-921. doi:  10.1364/OL.21.000919
[19] ADELSON E H, BERGEN J R. The Plenoptic Function and the Elements of Early Vision[M]// Landy M, Movshon J A. Computational Models of Visual Processing. Massachusetts: MIT Press, 1991: 3-20.
[20] LEVOY M, HANRAHAN P. Light field rendering[C/OL]//Proceedings of the 23 rd Annual Conference on Computer Graphics and Interactive Techniques-SIGGRAPH ’96. New York: ACM Press, 1996: 31–42. [2019–06–24]. http://portal.acm.org/citation.cfm?doid=237170.237199.
[21] NAYAR S K, NOGUCHI M. Real-time focus range sensor [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(12): 13.
[22] BATLLE J, MOUADDIB E, SALVI J. Recent progress in coded structured light as a technique to solve the correspondence problem: a survey [J]. Pattern Recognition, 1998, 31(7): 963-982. doi:  10.1016/S0031-3203(97)00074-5
[23] DEBEVEC P E, MALIK J. Recovering high dynamic range radiance maps from photographs[C/OL]//Proceedings of the 24 th Annual Conference on Computer Graphics and Interactive Techniques. New York, USA: ACM Press/Addison-Wesley Publishing Co., 1997: 369–378. [2019–06–24].https://doi.org/10.1145/258734.258884.
[24] NAYAR S K, MITSUNAGA T. High dynamic range imaging: spatially varying pixel exposures[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2000.
[25] NAYAR S K, BRANZOI V, BOULT T E. Programmable imaging using a digital micromirror array[C/OL]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR. Washington, DC, USA: IEEE, 2004: 436–443. [2019–06–24]. http://ieeexplore.ieee.org/document/1315065/.
[26] MARKS D L, STACK R A, BRADY D J. Three-dimensional coherence imaging in the fresnel domain [J]. Applied Optics, 1999, 38(8): 1332-1342. doi:  10.1364/AO.38.001332
[27] SCHECHNER Y Y, NARASIMHAN S G, NAYAR S K. Instant dehazing of images using polarization[C/OL]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR. Kauai, HI, USA: IEEE Comput Soc, 2001: I-325-I–332. [2019–06–24]. http://ieeexplore.ieee.org/document/990493/.
[28] 佚名. OSA Topical Meeting on Integrated Image Gathering and Processing, Albuquerque, New Mexico[R]. Optical Society of America, 2001.
[29] 佚名. CS 448 - topics in computer graphics: Computational photography[EB/OL]. [2019–06–25]. http://graphics.stanford.edu/courses/cs448-04-spring/.
[30] 佚名. Symposium on computational photography and video[EB/OL]. [2019–06–25]. http://scpv.csail.mit.edu/.
[31] RASKAR R, TUMBLIN J. Computational Photography, Imaging and Video[EB/OL]. [2019–06–25]. https://web.media.mit.edu/~raskar/photo/.
[32] WILBURN B, JOSHI N, VAISH V, et al. High-speed videography using a dense camera array [C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004.
[33] LEVOY M, CHEN B, VAISH V, et al. Synthetic aperture confocal imaging[C/OL]//ACM SIGGRAPH 2004 Papers. New York, NY, USA: ACM, 2004: 825–834. [2019–06–24]. http://doi.acm.org/10.1145/1186562.1015806.
[34] WILBURN B, JOSHI N, VAISH V, et al. High performance imaging using large camera arrays[C/OL]//ACM SIGGRAPH 2005 Papers. New York, NY, USA: ACM, 2005: 765–776. [2019–06–24]. http://doi.acm.org/10.1145/1186822.1073259.
[35] NAYAR S K, BEN-EZRA M. Motion-based motion deblurring [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(6): 689-698. doi:  10.1109/TPAMI.2004.1
[36] RASKAR R, TAN K-H, FERIS R, et al. Non-photorealistic camera: Depth edge detection and stylized rendering using multi-flash imaging[C/OL]//ACM SIGGRAPH 2004 Papers. New York, USA: ACM, 2004: 679–688. [2019–06–26]. http://doi.acm.org/10.1145/1186562.1015779.
[37] NG R, LEVOY M, BRÉDIF M, et al. Light field photography with a hand-held plenoptic camera [J]. Computer Science Technical Report CSTR, 2005, 2(11): 1-11.
[38] 佚名. Lytro[Z/OL]. (2019–02–26)[2019–06–26]. https://en.wikipedia.org/w/index.php?title=Lytro&oldid=885240133.
[39] SEN P, CHEN B, GARG G, et al. Dual photography[C/OL]//ACM SIGGRAPH 2005 Papers. New York, NY, USA: ACM, 2005: 745–755. [2019–06–24]. http://doi.acm.org/10.1145/1186822.1073257.
[40] TAKHAR D, LASKA J N, WAKIN M B, et al. A new compressive imaging camera architecture using optical-domain compression[C/OL]. BOUMAN C A, MILLER E L, POLLAK I. [2019–06–26]. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=728899.
[41] DUARTE M F, DAVENPORT M A, TAKHAR D, et al. Single-pixel imaging via compressive sampling [J]. IEEE Signal Processing Magazine, 2008, 25(2): 83-91. doi:  10.1109/MSP.2007.914730
[42] SUN B, EDGAR M P, BOWMAN R, et al. 3 D computational imaging with single-pixel detectors [J]. Science, 2013, 340(6134): 844-847. doi:  10.1126/science.1234454
[43] LEVOY M, NG R, ADAMS A, et al. Light Field Microscopy[C/OL]//ACM SIGGRAPH 2006 Papers. New York, NY, USA: ACM, 2006: 924–934. [2019–06–24]. http://doi.acm.org/10.1145/1179352.1141976.
[44] RASKAR R, AGRAWAL A, TUMBLIN J. Coded exposure photography: Motion deblurring using fluttered shutter[C/OL]//ACM SIGGRAPH 2006 Papers. New York, NY, USA: ACM, 2006: 795–804[2017–03–14]. http://doi.acm.org/10.1145/1179352.1141957.
[45] LEVIN A, FERGUS R, DURAND F, et al. Image and depth from a conventional camera with a coded aperture[C/OL]//ACM SIGGRAPH 2007 Papers. New York, NY, USA: ACM, 2007. [2019–06–26]. http://doi.acm.org/10.1145/1275808.1276464.
[46] VEERARAGHAVAN A, RASKAR R, AGRAWAL A, et al. Dappled photography: Mask enhanced cameras for heterodyned light fields and coded aperture refocusing[C/OL]//ACM SIGGRAPH 2007 Papers. New York, NY, USA: ACM, 2007. [2017–03–14]. http://doi.acm.org/10.1145/1275808.1276463.
[47] RASKAR R. Less is more: Coded computational photography[C/OL]//Proceedings of the 8 th Asian Conference on computer Vision - Volume Part I. Berlin, Heidelberg: Springer-Verlag, 2007: 1–12. [2019–06–25]. http://dl.acm.org/citation.cfm?id=1775614.1775616.
[48] GEHM M E, JOHN R, BRADY D J, et al. Single-shot compressive spectral imaging with a dual-disperser architecture [J]. Optics Express, 2007, 15(21): 14013-14027. doi:  10.1364/OE.15.014013
[49] WAGADARIKAR A, JOHN R, WILLETT R, et al. Single disperser design for coded aperture snapshot spectral imaging [J]. Applied Optics, 2008, 47(10): B44-B51. doi:  10.1364/AO.47.000B44
[50] BABCOCK H W. The possibility of compensating astronomical seeing [J]. Publications of the Astronomical Society of the Pacific, 1953, 65(386): 229-236.
[51] HARDY J W. Active optics: A new technology for the control of light [C]//Proceedings of the IEEE, 1978, 66(6): 651–697.
[52] FRIED D. Special issue on adaptive optics[J]. JOSA, 1977, 67(3): 47.
[53] LINNIK V P. On the possibility of reducing the influence of atmospheric seeing on the image quality of stars[C]//European Southern Observatory Conference and Workshop Proceedings. 1994, 48: 535.
[54] GERCHBERG R, SAXTON W. A practical algorithm for the determination of the phase from image and diffraction plane pictures [J]. Optik (Jena), 1972, 35: 237.
[55] GERCHBERG R W. Phase determination from image and diffraction plane pictures in the electron microscope [J]. Optik, 1971, 34(3): 275-284.
[56] FIENUP J R. Phase retrieval algorithms: A comparison [J]. Applied Optics, 1982, 21(15): 2758-2769. doi:  10.1364/AO.21.002758
[57] TAKASAKI H. Moiré Topography [J]. Applied Optics, 1970, 9(6): 1467-1472. doi:  10.1364/AO.9.001467
[58] CHIANG F P. Moire methods for contouring displacement, deflection, slope and curvature[C/OL]. [2019–06–26]. http://adsabs.harvard.edu/abs/1978 SPIE..153..113 C.
[59] Creath K, Wyant J C. Moiré and fringe projection techniques [J]. Optical Shop Testing, 1992, 2: 653-685.
[60] TAKEDA M, INA H, KOBAYASHI S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry [J]. JOSA, 1982, 72(1): 156-160. doi:  10.1364/JOSA.72.000156
[61] TAKEDA M. Fourier fringe analysis and its application to metrology of extreme physical phenomena: A review [Invited] [J]. Applied Optics, 2013, 52(1): 20. doi:  10.1364/AO.52.000020
[62] TAKEDA M, MUTOH K. Fourier transform profilometry for the automatic measurement of 3-d object shapes [J]. Applied Optics, 1983, 22(24): 3977-3982. doi:  10.1364/AO.22.003977
[63] MALACARA D. Optical Shop Testing[M]. New Jersey: John Wiley & Sons, 2007.
[64] BRUNING J H, HERRIOTT D R, GALLAGHER J, et al. Digital wavefront measuring interferometer for testing optical surfaces and lenses [J]. Applied Optics, 1974, 13(11): 2693-2703. doi:  10.1364/AO.13.002693
[65] GABOR D. A New microscopic principle[EB/OL]. [2019–06–24]. https: //www.nature.com/articles/161777 a0.
[66] LEITH E N, UPATNIEKS J. Reconstructed wavefronts and communication theory [J]. JOSA, 1962, 52(10): 1123-1130. doi:  10.1364/JOSA.52.001123
[67] GOODMAN J W, LAWRENCE R W. Digital image formation from electronically detected holograms [J]. Applied Physics Letters, 1967, 11(3): 77-79. doi:  10.1063/1.1755043
[68] KREIS T. Digital holographic interference-phase measurement using the Fourier-transform method [J]. JOSA A, 1986, 3(6): 847-855. doi:  10.1364/JOSAA.3.000847
[69] NAKADATE S, YATAGAI T, SAITO H. Digital speckle-pattern shearing interferometry [J]. Applied Optics, 1980, 19(24): 4241-4246. doi:  10.1364/AO.19.004241
[70] NAKADATE S, YATAGAI T, SAITO H. Electronic speckle pattern interferometry using digital image processing techniques [J]. Applied Optics, 1980, 19(11): 1879-1883. doi:  10.1364/AO.19.001879
[71] SCHNARS U, JÜPTNER W. Direct recording of holograms by a ccd target and numerical reconstruction [J]. Applied Optics, 1994, 33(2): 179-181. doi:  10.1364/AO.33.000179
[72] CUCHE E, MARQUET P, DEPEURSINGE C. Spatial filtering for zero-order and twin-image elimination in digital off-axis holography [J]. Applied Optics, 2000, 39(23): 4070-4075. doi:  10.1364/AO.39.004070
[73] TAKEDA M, RU Q-S. Computer-based highly sensitive electron-wave interferometry [J]. Applied Optics, 1985, 24(18): 3068. doi:  10.1364/AO.24.003068
[74] KLOTZ E, WEISS H. Three-dimensional coded aperture imaging using nonredundant point distributions [J]. Optics Communications, 1974, 11(4): 368-372. doi:  10.1016/0030-4018(74)90238-7
[75] TIPTON M D, DOWDEY J E, BONTE F J, et al. Coded aperture imaging using on-axis Fresnel zone plates and extended Gamma-ray sources [J]. Radiology, 1974, 112(1): 155-158. doi:  10.1148/112.1.155
[76] FENIMORE E E. Coded aperture imaging: Predicted performance of uniformly redundant arrays [J]. Applied Optics, 1978, 17(22): 3562-3570. doi:  10.1364/AO.17.003562
[77] FENIMORE E E, CANNON T M. Coded aperture imaging with uniformly redundant arrays [J]. Applied Optics, 1978, 17(3): 337-347. doi:  10.1364/AO.17.000337
[78] FENIMORE E E, CANNON T M, MILLER E L. Comparison of Fresnel zone plates and uniformly redundant arrays[C/OL]//Digital Image Processing II. International Society for Optics and Photonics, 1978: 232–236. [2019–06–26]. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/0149/0000/Comparison-Of-Fresnel-Zone-Plates-And-Uniformly-Redundant-Arrays/10.1117/12.956690.short.
[79] GOTTESMAN S R, FENIMORE E E. New family of binary arrays for coded aperture imaging [J]. Applied Optics, 1989, 28(20): 4344-4352. doi:  10.1364/AO.28.004344
[80] OSA. Computational Optical Sensing and Imaging[EB/OL]. [2019–06–24]. https://www.osapublishing.org/conference.cfm?meetingid=15.
[81] 佚名. IEEE International Conference on Computational Photography (ICCP)[EB/OL]. [2019–06–26]. https://ieeexplore.ieee.org/xpl/conhome/1800125/all-proceedings.
[82] 佚名. Conference Detail for Computational Imaging IV[EB/OL]. [2019–06–26]. https://spie.org/SI/conferencedetails/computational-imaging?SSO=1.
[83] 佚名. About TCI[EB/OL]. (2019–04–12)[2019–06–26]. https://signalprocessingsociety.org/publications-resources/ieee-transactions-computational-imaging/about-tci.
[84] 佚名. To the cinematic and vr community, live long and prosper[EB/OL]. [2019–06–26]. https://web.archive.org/web/20180328000530/http://blog.lytro.com/to-the-cinematic-and-vr-community-live-long-and-prosper/.
[85] 赵玲玲. 实景三维中国建设技术大纲印发[EB/OL]. [2022–02–15]. http://www.mnr.gov.cn/dt/ch/202108/t20210826_2678325.html.
[86] Cao Liangcai, He Zehao, Liu Kexuan, et al. Progress and challenges in dynamic holographic 3 D display for the metaverse (Invited) [J]. Infrared and Laser Engineering, 2022, 51(1): 20210935. (in Chinese) doi:  10.3788/IRLA20210935
[87] SULLIVAN B T. Computational photography is ready for its close-up[EB/OL]. [2019–06–26]. https://www.pcmag.com/article/362806/computational-photography-is-ready-for-its-close-up.
[88] 佚名. Computational photography will completely revolutionize your smartphone camera - android authority[EB/OL]. [2019–06–26]. http://m.dailyhunt.in/news/india/english/android+authority-epaper-andauth/computational+photography+will+completely+revolutionize+your+smartphone+camera-newsid-94132611.
[89] COWLEY J M. Diffraction Physics[M]. 3rd ed. Amsterdam: Elsevier Science B V, 1995.
[90] GOODMAN J W. Introduction to Fourier Optics[M]. Colorado: Roberts and Company Publishers, 2005.
[91] BORN M, WOLF E, BHATIA A B, et al. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light[M]. 7th ed. Cambridge: Cambridge University Press, 1999.
[92] 佚名. High-speed camera[Z/OL]. (2017–06–20). https://en.wikipedia.org/w/index.php?title=High-speed_camera&oldid=786672531.
[93] ZERNIKE F. Phase contrast, a new method for the microscopic observation of transparent objects [J]. Physica, 1942, 9(7): 686-698. doi:  10.1016/S0031-8914(42)80035-X
[94] NOMARSKI G. Differential microinterferometer with polarized waves [J]. J Phys Radium Paris, 1955, 16(9): 9S-11S.
[95] ABRAMOVICI A, ALTHOUSE W E, DREVER R W, et al. LIGO: The laser interferometer gravitational-wave observatory [J]. Science, 1992, 256(5055): 325-333. doi:  10.1126/science.256.5055.325
[96] ABBOTT B P, ABBOTT R, ABBOTT T D, et al. Observation of gravitational waves from a binary black hole merger [J]. Physical Review Letters, 2016, 116(6): 061102. doi:  10.1103/PhysRevLett.116.061102
[97] OLE J, LEKBERG. Electronic speckle pattern interferometry [J]. Physics in Technology, 1980, 11(1): 16. doi:  10.1088/0305-4624/11/1/303
[98] WANG W-C, HWANG C-H, LIN S-Y. Vibration measurement by the time-averaged electronic speckle pattern interferometry methods [J]. Applied Optics, 1996, 35(22): 4502-4509. doi:  10.1364/AO.35.004502
[99] POPESCU G, IKEDA T, DASARI R R, et al. Diffraction phase microscopy for quantifying cell structure and dynamics [J]. Optics Letters, 2006, 31(6): 775-777. doi:  10.1364/OL.31.000775
[100] SCHWARZ C J, KUZNETSOVA Y, BRUECK S R J. Imaging interferometric microscopy [J]. Optics Letters, 2003, 28(16): 1424-1426. doi:  10.1364/OL.28.001424
[101] KUZNETSOVA Y, NEUMANN A, BRUECK S R J. Imaging interferometric microscopy–approaching the linear systems limits of optical resolution [J]. Optics Express, 2007, 15(11): 6651-6663. doi:  10.1364/OE.15.006651
[102] SCHNARS U, JUEPTNER W. Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and related techniques[M/OL]. Springer Science & Business Media, 2005. [2017–07–04]. https://link.springer.com/book/10.1007/b138284.
[103] CUCHE E, BEVILACQUA F, DEPEURSINGE C. Digital holography for quantitative phase-contrast imaging [J]. Optics Letters, 1999, 24(5): 291-293. doi:  10.1364/OL.24.000291
[104] SCHNARS U, JÜPTNER W P O. Digital recording and numerical reconstruction of holograms [J]. Measurement Science and Technology, 2002, 13(9): R85. doi:  10.1088/0957-0233/13/9/201
[105] CUCHE E, MARQUET P, DEPEURSINGE C. Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of fresnel off-axis holograms [J]. Applied Optics, 1999, 38(34): 6994-7001. doi:  10.1364/AO.38.006994
[106] KEMPER B, LANGEHANENBERG P, VON BALLY G. Digital holographic microscopy [J]. Optik & Photonik, 2007, 2(2): 41-44. doi:  10.1002/opph.201190249
[107] KIM M K. Digital Holographic Microscopy[M/OL]//Digital Holographic Microscopy. New York: Springer, 2011: 149–190. [2017–07–04]. https://link.springer.com/chapter/10.1007/978-1-4419-7793-9_11.
[108] KEMPER B, von BALLY G. Digital holographic microscopy for live cell applications and technical inspection [J]. Applied Optics, 2008, 47(4): A52-A61. doi:  10.1364/AO.47.000A52
[109] MARQUET P, RAPPAZ B, MAGISTRETTI P J, et al. Digital holographic microscopy: A noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy [J]. Optics Letters, 2005, 30(5): 468-470. doi:  10.1364/OL.30.000468
[110] HARTMANN J. Bemerkungen uber den bau und die justirung von spektrographen [J]. Zt Instrumentenkd, 1990, 20(47): 17-27.
[111] PLATT B C, SHACK R. History and principles of Shack-Hartmann wavefront sensing [J]. Journal of Refractive Surgery, 2001, 17(5): S573-S577. doi:  10.3928/1081-597X-20010901-13
[112] SHACK R V, PLATT B. Production and use of a lenticular Hartmann screen [J]. Journal of the Optical Society of America, 1971, 61: 656-661.
[113] RAGAZZONI R. Pupil plane wavefront sensing with an oscillating prism [J]. Journal of Modern Optics, 1996, 43(2): 289-293. doi:  10.1080/09500349608232742
[114] ESPOSITO S, RICCARDI A. Pyramid wavefront sensor behavior in partial correction adaptive optic systems [J]. Astronomy & Astrophysics, 2001, 369(2): L9-L12. doi:  10.1051/0004-6361:20010219
[115] RAGAZZONI R, DIOLAITI E, VERNET E. A pyramid wavefront sensor with no dynamic modulation [J]. Optics Communications, 2002, 208(1): 51-60. doi:  10.1016/S0030-4018(02)01580-8
[116] NEIL M A A, BOOTH M J, WILSON T. New modal wave-front sensor: A theoretical analysis [J]. JOSA A, 2000, 17(6): 1098-1107. doi:  10.1364/JOSAA.17.001098
[117] BOOTH M J. Wave front sensor-less adaptive optics: A model-based approach using sphere packings [J]. Optics Express, 2006, 14(4): 1339-1352. doi:  10.1364/OE.14.001339
[118] SCHÄFER B, MANN K. Determination of beam parameters and coherence properties of laser radiation by use of an extended Hartmann-Shack wave-front sensor [J]. Applied Optics, 2002, 41(15): 2809-2817. doi:  10.1364/AO.41.002809
[119] SCHÄFER B, LÜBBECKE M, MANN K. Hartmann-Shack wave front measurements for real time determination of laser beam propagation parameters [J]. Review of Scientific Instruments, 2006, 77(5): 053103. doi:  10.1063/1.2198795
[120] PFUND J, LINDLEIN N, SCHWIDER J, et al. Absolute sphericity measurement: A comparative study of the use of interferometry and a Shack–Hartmann sensor [J]. Optics Letters, 1998, 23(10): 742-744. doi:  10.1364/OL.23.000742
[121] GREIVENKAMP J E, SMITH D G, GAPPINGER R O, et al. Optical testing using Shack-Hartmann wavefront sensors[C]// Optical Engineering for Sensing and Nanotechnology (ICOSN 2001). SPIE, 2001, 4416: 260-263.
[122] DAYTON D, GONGLEWSKI J, PIERSON B, et al. Atmospheric structure function measurements with a Shack–Hartmann wave-front sensor [J]. Optics Letters, 1992, 17(24): 1737-1739. doi:  10.1364/OL.17.001737
[123] RICKLIN J C, DAVIDSON F M. Atmospheric turbulence effects on a partially coherent Gaussian beam: Implications for free-space laser communication [J]. JOSA A, 2002, 19(9): 1794-1802. doi:  10.1364/JOSAA.19.001794
[124] BOOTH M J. Adaptive optics in microscopy [J]. Philosophical Transactions of the Royal Society of London A:Mathematical, Physical and Engineering Sciences, 2007, 365(1861): 2829-2843. doi:  10.1098/rsta.2007.0013
[125] CHA J W, BALLESTA J, SO P T C. Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy [J]. Journal of Biomedical Optics, 2010, 15(4): 046022. doi:  10.1117/1.3475954
[126] LIANG J, GRIMM B, GOELZ S, et al. Objective measurement of wave aberrations of the human eye with the use of a Hartmann–Shack wave-front sensor [J]. JOSA A, 1994, 11(7): 1949-1957. doi:  10.1364/JOSAA.11.001949
[127] MORENO-BARRIUSO E, NAVARRO R. Laser ray tracing versus Hartmann–Shack sensor for measuring optical aberrations in the human eye [J]. JOSA A, 2000, 17(6): 974-985. doi:  10.1364/JOSAA.17.000974
[128] KOHNEN T, KOCH D. Cataract and Refractive Surgery[M]. Berlin: Springer, 2006.
[129] ALLEN L J, OXLEY M P. Phase retrieval from series of images obtained by defocus variation [J]. Optics Communications, 2001, 199: 65-75. doi:  10.1016/S0030-4018(01)01556-5
[130] BAUSCHKE H H, COMBETTES P L, LUKE D R. Phase retrieval, error reduction algorithm, and fienup variants: A view from convex optimization [J]. JOSA A, 2002, 19(7): 1334-1345. doi:  10.1364/JOSAA.19.001334
[131] BAUSCHKE H H, COMBETTES P L, LUKE D R. Hybrid projection–reflection method for phase retrieval [J]. JOSA A, 2003, 20(6): 1025-1034. doi:  10.1364/JOSAA.20.001025
[132] ELSER V. Phase retrieval by iterated projections [J]. JOSA A, 2003, 20(1): 40-55. doi:  10.1364/JOSAA.20.000040
[133] LUKE D R. Relaxed averaged alternating reflections for diffraction imaging [J]. Inverse Problems, 2005, 21(1): 37-50. doi:  10.1088/0266-5611/21/1/004
[134] ZUO J M, VARTANYANTS I, GAO M, et al. Atomic resolution imaging of a carbon nanotube from diffraction intensities [J]. Science, 2003, 300(5624): 1419-1421. doi:  10.1126/science.1083887
[135] EISEBITT S, LÜNING J, SCHLOTTER W F, et al. Lensless imaging of magnetic nanostructures by X-ray spectro-holography [J]. Nature, 2004, 432(7019): 885-888. doi:  10.1038/nature03139
[136] MARCHESINI S, HE H, CHAPMAN H N, et al. X-ray image reconstruction from a diffraction pattern alone [J]. Physical Review B, 2003, 68(14): 140101. doi:  10.1103/PhysRevB.68.140101
[137] GONSALVES R A, CHIDLAW R. Wavefront sensing by phase retrieval[C]//Applications of Digital Image Processing III. SPIE, 1979, 207: 32-39.
[138] GUYON O. Limits of adaptive optics for high-contrast imaging [J]. The Astrophysical Journal, 2005, 629(1): 592. doi:  10.1086/431209
[139] PEDRINI G, OSTEN W, ZHANG Y. Wave-front reconstruction from a sequence of interferograms recorded at different planes [J]. Optics Letters, 2005, 30(8): 833-835. doi:  10.1364/OL.30.000833
[140] ZHANG Y, PEDRINI G, OSTEN W, et al. Whole optical wave field reconstruction from double or multi in-line holograms by phase retrieval algorithm [J]. Optics Express, 2003, 11(24): 3234-3241. doi:  10.1364/OE.11.003234
[141] ANAND A, PEDRINI G, OSTEN W, et al. Wavefront sensing with random amplitude mask and phase retrieval [J]. Optics Letters, 2007, 32(11): 1584-1586. doi:  10.1364/OL.32.001584
[142] ALMORO P F, PEDRINI G, GUNDU P N, et al. Phase microscopy of technical and biological samples through random phase modulation with a diffuser [J]. Optics Letters, 2010, 35(7): 1028-1030. doi:  10.1364/OL.35.001028
[143] MUDANYALI O, TSENG D, OH C, et al. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications [J]. Lab on a Chip, 2010, 10(11): 1417-1428. doi:  10.1039/C000453G
[144] TSENG D, MUDANYALI O, OZTOPRAK C, et al. Lensfree microscopy on a cellphone [J]. Lab on a Chip, 2010, 10(14): 1787-1792. doi:  10.1039/C003477K
[145] FAULKNER H M L, RODENBURG J M. Movable aperture lensless transmission microscopy: A novel phase retrieval algorithm [J]. Physical Review Letters, 2004, 93(2): 023903. doi:  10.1103/PhysRevLett.93.023903
[146] FAULKNER H M L, RODENBURG J M. Error tolerance of an iterative phase retrieval algorithm for moveable illumination microscopy [J]. Ultramicroscopy, 2005, 103(2): 153-164. doi:  10.1016/j.ultramic.2004.11.006
[147] GUIZAR-SICAIROS M, FIENUP J R. Phase retrieval with transverse translation diversity: A nonlinear optimization approach [J]. Optics Express, 2008, 16(10): 7264-7278. doi:  10.1364/OE.16.007264
[148] THIBAULT P, DIEROLF M, MENZEL A, et al. High-resolution scanning X-ray diffraction microscopy [J]. Science, 2008, 321(5887): 379-382. doi:  10.1126/science.1158573
[149] MAIDEN A M, RODENBURG J M. An improved ptychographical phase retrieval algorithm for diffractive imaging [J]. Ultramicroscopy, 2009, 109(10): 1256-1262. doi:  10.1016/j.ultramic.2009.05.012
[150] THIBAULT P, DIEROLF M, BUNK O, et al. Probe retrieval in ptychographic coherent diffractive imaging [J]. Ultramicroscopy, 2009, 109(4): 338-343. doi:  10.1016/j.ultramic.2008.12.011
[151] THIBAULT P, GUIZAR-SICAIROS M. Maximum-likelihood refinement for coherent diffractive imaging [J]. New Journal of Physics, 2012, 14(6): 063004. doi:  10.1088/1367-2630/14/6/063004
[152] MAIDEN A, JOHNSON D, LI P. Further improvements to the ptychographical iterative engine [J]. Optica, 2017, 4(7): 736-745. doi:  10.1364/OPTICA.4.000736
[153] MAIDEN A M, HUMPHRY M J, SARAHAN M C, et al. An annealing algorithm to correct positioning errors in ptychography [J]. Ultramicroscopy, 2012, 120: 64-72. doi:  10.1016/j.ultramic.2012.06.001
[154] BECKERS M, SENKBEIL T, GORNIAK T, et al. Drift correction in ptychographic diffractive imaging [J]. Ultramicroscopy, 2013, 126: 44-47. doi:  10.1016/j.ultramic.2012.11.006
[155] ZHANG F, PETERSON I, VILA-COMAMALA J, et al. Translation position determination in ptychographic coherent diffraction imaging [J]. Optics Express, 2013, 21(11): 13592. doi:  10.1364/OE.21.013592
[156] THIBAULT P, MENZEL A. Reconstructing state mixtures from diffraction measurements [J]. Nature, 2013, 494(7435): 68-71. doi:  10.1038/nature11806
[157] BATEY D J, CLAUS D, RODENBURG J M. Information multiplexing in ptychography [J]. Ultramicroscopy, 2014, 138: 13-21. doi:  10.1016/j.ultramic.2013.12.003
[158] CLARK J N, HUANG X, HARDER R J, et al. Dynamic imaging using ptychography [J]. Physical Review Letters, 2014, 112(11): 113901. doi:  https://link.aps.org/doi/10.1103/PhysRevLett.112.113901
[159] KARL R, BEVIS C, LOPEZ-RIOS R, et al. Spatial, spectral, and polarization multiplexed ptychography [J]. Optics Express, 2015, 23(23): 30250. doi:  10.1364/OE.23.030250
[160] MAIDEN A M, HUMPHRY M J, ZHANG F, et al. Superresolution imaging via ptychography [J]. JOSA A, 2011, 28(4): 604-612. doi:  10.1364/JOSAA.28.000604
[161] HUMPHRY M J, KRAUS B, HURST A C, et al. Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging [J]. Nature Communications, 2012, 3: 730. doi:  10.1038/ncomms1733
[162] STOCKMAR M, CLOETENS P, ZANETTE I, et al. Near-field ptychography: Phase retrieval for inline holography using a structured illumination [J]. Scientific Reports, 2013, 3(1): 1-6. doi:  http://www.nature.com/articles/srep01927
[163] TAKAHASHI Y, SUZUKI A, FURUTAKU S, et al. High-resolution and high-sensitivity phase-contrast imaging by focused hard X-ray ptychography with a spatial filter [J]. Applied Physics Letters, 2013, 102(9): 094102. doi:  10.1063/1.4794063
[164] MAIDEN A M, HUMPHRY M J, RODENBURG J M. Ptychographic transmission microscopy in three dimensions using a multi-slice approach [J]. JOSA A, 2012, 29(8): 1606-1614. doi:  10.1364/JOSAA.29.001606
[165] GODDEN T M, SUMAN R, HUMPHRY M J, et al. Ptychographic microscope for three-dimensional imaging [J]. Optics Express, 2014, 22(10): 12513. doi:  10.1364/OE.22.012513
[166] SUZUKI A, FURUTAKU S, SHIMOMURA K, et al. High-resolution multislice x-ray ptychography of extended thick objects [J]. Physical Review Letters, 2014, 112(5): 053903. doi:  10.1103/PhysRevLett.112.053903
[167] SHIMOMURA K, SUZUKI A, HIROSE M, et al. Precession X-ray ptychography with multislice approach [J]. Physical Review B, 2015, 91(21): 214114. doi:  https://link.aps.org/doi/10.1103/PhysRevB.91.214114
[168] THIBAULT P, ELSER V, JACOBSEN C, et al. Reconstruction of a yeast cell from X-ray diffraction data [J]. Acta Crystallographica Section A Foundations of Crystallography, 2006, 62(4): 248-261. doi:  10.1107/S0108767306016515
[169] RODENBURG J M, HURST A C, CULLIS A G, et al. Hard-X-ray lensless imaging of extended objects [J]. Physical Review Letters, 2007, 98(3): 034801. doi:  https://link.aps.org/doi/10.1103/PhysRevLett.98.034801
[170] GIEWEKEMEYER K, THIBAULT P, KALBFLEISCH S, et al. Quantitative biological imaging by ptychographic x-ray diffraction microscopy [J]. Proceedings of the National Academy of Sciences, 2010, 107(2): 529-534. doi:  10.1073/pnas.0905846107
[171] MAIDEN A M, MORRISON G R, KAULICH B, et al. Soft X-ray spectromicroscopy using ptychography with randomly phased illumination [J]. Nature Communications, 2013, 4: 1669. doi:  10.1038/ncomms2640
[172] RODENBURG J M, HURST A C, CULLIS A G. Transmission microscopy without lenses for objects of unlimited size [J]. Ultramicroscopy, 2007, 107(2-3): 227-231. doi:  10.1016/j.ultramic.2006.07.007
[173] HUE F, RODENBURG J M, MAIDEN A M, et al. Extended ptychography in the transmission electron microscope: Possibilities and limitations [J]. Ultramicroscopy, 2011, 111(8): 1117-1123. doi:  10.1016/j.ultramic.2011.02.005
[174] HUE F, RODENBURG J M, MAIDEN A M, et al. Wave-front phase retrieval in transmission electron microscopy via ptychography [J]. Physical Review B, 2010, 82(12): 121415.
[175] BRADY G R, GUIZAR-SICAIROS M, FIENUP J R. Optical wavefront measurement using phase retrieval with transverse translation diversity [J]. Optics Express, 2009, 17(2): 624-639. doi:  10.1364/OE.17.000624
[176] MAIDEN A M, RODENBURG J M, HUMPHRY M J. Optical ptychography: A practical implementation with useful resolution [J]. Optics Letters, 2010, 35(15): 2585-2587. doi:  10.1364/OL.35.002585
[177] MARRISON J, RÄTY L, MARRIOTT P, et al. Ptychography – a label free, high-contrast imaging technique for live cells using quantitative phase information[J/OL]. Scientific Reports, 2013, 3(1)[2017–07–05]. http://www.nature.com/articles/srep02369.
[178] ZHENG G, HORSTMEYER R, YANG C. Wide-field, high-resolution Fourier ptychographic microscopy [J]. Nature Photonics, 2013, 7(9): 739-745. doi:  10.1038/nphoton.2013.187
[179] OU X, ZHENG G, YANG C. Embedded pupil function recovery for Fourier ptychographic microscopy [J]. Optics Express, 2014, 22(5): 4960. doi:  10.1364/OE.22.004960
[180] SUN J, CHEN Q, ZHANG Y, et al. Efficient positional misalignment correction method for Fourier ptychographic microscopy [J]. Biomedical Optics Express, 2016, 7(4): 1336. doi:  10.1364/BOE.7.001336
[181] YEH L-H, DONG J, ZHONG J, et al. Experimental robustness of Fourier ptychography phase retrieval algorithms [J]. Optics Express, 2015, 23(26): 33214. doi:  10.1364/OE.23.033214
[182] DONG S, SHIRADKAR R, NANDA P, et al. Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging [J]. Biomedical Optics Express, 2014, 5(6): 1757. doi:  10.1364/BOE.5.001757
[183] TIAN L, LI X, RAMCHANDRAN K, et al. Multiplexed coded illumination for Fourier ptychography with an led array microscope [J]. Biomedical Optics Express, 2014, 5(7): 2376-2389. doi:  10.1364/BOE.5.002376
[184] SUN J, CHEN Q, ZHANG Y, et al. Sampling criteria for Fourier ptychographic microscopy in object space and frequency space [J]. Optics Express, 2016, 24(14): 15765. doi:  10.1364/OE.24.015765
[185] HORSTMEYER R, CHUNG J, OU X, et al. Diffraction tomography with Fourier ptychography [J]. Optica, 2016, 3(8): 827-835. doi:  10.1364/OPTICA.3.000827
[186] ZUO C, SUN J, LI J, et al. Wide-field high-resolution 3 d microscopy with Fourier ptychographic diffraction tomography [J]. Optics and Lasers in Engineering, 2020, 128: 106003. doi:  10.1016/j.optlaseng.2020.106003
[187] HORSTMEYER R, CHEN R Y, OU X, et al. Solving ptychography with a convex relaxation [J]. New Journal of Physics, 2015, 17(5): 053044. doi:  10.1088/1367-2630/17/5/053044
[188] ZUO C, SUN J, CHEN Q. Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy [J]. Optics Express, 2016, 24(18): 20724. doi:  10.1364/OE.24.020724
[189] TEAGUE M R. Deterministic phase retrieval: A Green’s function solution [J]. JOSA, 1983, 73(11): 1434-1441. doi:  10.1364/JOSA.73.001434
[190] STREIBL N. Phase imaging by the transport equation of intensity [J]. Optics Communications, 1984, 49(1): 6-10. doi:  10.1016/0030-4018(84)90079-8
[191] ICHIKAWA K, LOHMANN A W, TAKEDA M. Phase retrieval based on the irradiance transport equation and the Fourier transform method: experiments [J]. Applied Optics, 1988, 27(16): 3433-3436. doi:  10.1364/AO.27.003433
[192] RODDIER F, RODDIER C, RODDIER N. Curvature sensing: A new wavefront sensing method[C/OL]. 1988: 203-209. http://dx.doi.org/10.1117/12.948547.
[193] RODDIER F. Curvature sensing and compensation: A new concept in adaptive optics [J]. Applied Optics, 1988, 27(7): 1223-1225. doi:  10.1364/AO.27.001223
[194] RODDIER F. Wavefront sensing and the irradiance transport equation [J]. Applied Optics, 1990, 29(10): 1402-1403. doi:  10.1364/AO.29.001402
[195] RODDIER N A. Algorithms for wavefront reconstruction out of curvature sensing data[C/OL]. http://dx.doi.org/10.1117/12.48799.
[196] GUREYEV T E, ROBERTS A, NUGENT K A. Partially coherent fields, the transport-of-intensity equation, and phase uniqueness [J]. JOSA A, 1995, 12(9): 1942-1946. doi:  10.1364/JOSAA.12.001942
[197] GUREYEV T E, NUGENT K A. Phase retrieval with the transport-of-intensity equation. ii. orthogonal series solution for nonuniform illumination [J]. JOSA A, 1996, 13(8): 1670-1682. doi:  10.1364/JOSAA.13.001670
[198] GUREYEV T E, NUGENT K A. Rapid quantitative phase imaging using the transport of intensity equation [J]. Optics Communications, 1997, 133(1): 339-346. doi:  10.1016/S0030-4018(96)00454-3
[199] PAGANIN D, NUGENT K A. Noninterferometric phase imaging with partially coherent light [J]. Physical Review Letters, 1998, 80(12): 2586. doi:  10.1103/PhysRevLett.80.2586
[200] NUGENT K A, GUREYEV T E, COOKSON D F, et al. Quantitative phase imaging using hard x rays [J]. Physical Review Letters, 1996, 77(14): 2961. doi:  10.1103/PhysRevLett.77.2961
[201] ALLMAN B E, MCMAHON P J, NUGENT K A, et al. Phase radiography with neutrons [J]. Nature, 2000, 408(6809): 158. doi:  10.1038/35041626
[202] MCMAHON P J, ALLMAN B E, JACOBSON D L, et al. Quantitative phase radiography with polychromatic neutrons [J]. Physical Review Letters, 2003, 91(14): 145502. doi:  10.1103/PhysRevLett.91.145502
[203] BAJT B, BARTY A, NUGENT K A, et al. Quantitative phase-sensitive imaging in a transmission electron microscope [J]. Ultramicroscopy, 2000, 83(1-2): 67-73. doi:  10.1016/S0304-3991(99)00174-6
[204] MCMAHON P J, BARONE-NUGENT E D, ALLMAN B E, et al. Quantitative phase-amplitude microscopy ii: Differential interference contrast imaging for biological TEM [J]. Journal of Microscopy, 2002, 206(3): 204-208. doi:  10.1046/j.1365-2818.2002.01026.x
[205] BELEGGIA M, SCHOFIELD M A, VOLKOV V V, et al. On the transport of intensity technique for phase retrieval [J]. Ultramicroscopy, 2004, 102(1): 37-49. doi:  10.1016/j.ultramic.2004.08.004
[206] VOLKOV V V, ZHU Y. Lorentz phase microscopy of magnetic materials [J]. Ultramicroscopy, 2004, 98(2): 271-281. doi:  10.1016/j.ultramic.2003.08.026
[207] MCVITIE S, CUSHLEY M. Quantitative Fresnel Lorentz microscopy and the transport of intensity equation [J]. Ultramicroscopy, 2006, 106(4-5): 423-431. doi:  10.1016/j.ultramic.2005.12.001
[208] PETERSEN T C, KEAST V J, PAGANIN D M. Quantitative TEM-based phase retrieval of MgO nano-cubes using the transport of intensity equation [J]. Ultramicroscopy, 2008, 108(9): 805-815. doi:  10.1016/j.ultramic.2008.01.001
[209] BARTY A, NUGENT K A, PAGANIN D, et al. Quantitative optical phase microscopy [J]. Optics Letters, 1998, 23(11): 817-819. doi:  10.1364/OL.23.000817
[210] BARONE-NUGENT E D, BARTY A, NUGENT K A. Quantitative phase-amplitude microscopy I: Optical microscopy [J]. Journal of Microscopy, 2002, 206(3): 194-203. doi:  10.1046/j.1365-2818.2002.01027.x
[211] STREIBL N. Three-dimensional imaging by a microscope [J]. JOSA A, 1985, 2(2): 121-127. doi:  10.1364/JOSAA.2.000121
[212] SHEPPARD C J. Three-dimensional phase imaging with the intensity transport equation [J]. Applied Optics, 2002, 41(28): 5951-5955. doi:  10.1364/AO.41.005951
[213] WALLER L, TIAN L, BARBASTATHIS G. Transport of intensity phase-amplitude imaging with higher order intensity derivatives [J]. Optics Express, 2010, 18(12): 12552-12561. doi:  10.1364/OE.18.012552
[214] KOU S S, WALLER L, BARBASTATHIS G, et al. Transport-of-intensity approach to differential interference contrast (TI-DIC) microscopy for quantitative phase imaging [J]. Optics Letters, 2010, 35(3): 447-449. doi:  10.1364/OL.35.000447
[215] WALLER L, LUO Y, YANG S Y, et al. Transport of intensity phase imaging in a volume holographic microscope [J]. Optics Letters, 2010, 35(17): 2961-2963. doi:  10.1364/OL.35.002961
[216] WALLER L, KOU S S, SHEPPARD C J R, et al. Phase from chromatic aberrations [J]. Optics Express, 2010, 18(22): 22817-22825. doi:  10.1364/OE.18.022817
[217] KOU S S, WALLER L, BARBASTATHIS G, et al. Quantitative phase restoration by direct inversion using the optical transfer function [J]. Optics Letters, 2011, 36(14): 2671-2673. doi:  10.1364/OL.36.002671
[218] ALMORO P F, WALLER L, AGOUR M, et al. Enhanced deterministic phase retrieval using a partially developed speckle field [J]. Optics Letters, 2012, 37(11): 2088-2090. doi:  10.1364/OL.37.002088
[219] GORTHI S S, SCHONBRUN E. Phase imaging flow cytometry using a focus-stack collecting microscope [J]. Optics Letters, 2012, 37(4): 707-709. doi:  10.1364/OL.37.000707
[220] WALLER L, TSANG M, PONDA S, et al. Phase and amplitude imaging from noisy images by Kalman filtering [J]. Optics Express, 2011, 19(3): 2805-2815. doi:  10.1364/OE.19.002805
[221] XUE B, ZHENG S, CUI L, et al. Transport of intensity phase imaging from multiple intensities measured in unequally-spaced planes [J]. Optics Express, 2011, 19(21): 20244-20250. doi:  10.1364/OE.19.020244
[222] BIE R, YUAN X-H, ZHAO M, et al. Method for estimating the axial intensity derivative in the TIE with higher order intensity derivatives and noise suppression [J]. Optics Express, 2012, 20(7): 8186-8191. doi:  10.1364/OE.20.008186
[223] ZHENG S, XUE B, XUE W, et al. Transport of intensity phase imaging from multiple noisy intensities measured in unequally-spaced planes [J]. Optics Express, 2012, 20(2): 972-985. doi:  10.1364/OE.20.000972
[224] MARTINEZ-CARRANZA J, FALAGGIS K, KOZACKI T. Optimum measurement criteria for the axial derivative intensity used in transport of intensity-equation-based solvers [J]. Optics Letters, 2014, 39(2): 182-185. doi:  10.1364/OL.39.000182
[225] FALAGGIS K, KOZACKI T, KUJAWINSKA M. Optimum plane selection criteria for single-beam phase retrieval techniques based on the contrast transfer function [J]. Optics Letters, 2014, 39(1): 30-33. doi:  10.1364/OL.39.000030
[226] ZUO C, CHEN Q, ASUNDI A. Light field moment imaging: Comment [J]. Optics Letters, 2014, 39(3): 654. doi:  10.1364/OL.39.000654
[227] ZUO C, CHEN Q, TIAN L, et al. Transport of intensity phase retrieval and computational imaging for partially coherent fields: The phase space perspective [J]. Optics and Lasers in Engineering, 2015, 71: 20-32. doi:  10.1016/j.optlaseng.2015.03.006
[228] ZUO C, CHEN Q, ASUNDI A. Boundary-artifact-free phase retrieval with the transport of intensity equation: Fast solution with use of discrete cosine transform [J]. Optics Express, 2014, 22(8): 9220. doi:  10.1364/OE.22.009220
[229] ZUO C, CHEN Q, LI H, et al. Boundary-artifact-free phase retrieval with the transport of intensity equation II: Applications to microlens characterization [J]. Optics Express, 2014, 22(15): 18310. doi:  10.1364/OE.22.018310
[230] HUANG L, ZUO C, IDIR M, et al. Phase retrieval with the transport-of-intensity equation in an arbitrarily shaped aperture by iterative discrete cosine transforms [J]. Optics Letters, 2015, 40(9): 1976. doi:  10.1364/OL.40.001976
[231] ZUO C, CHEN Q, HUANG L, et al. Phase discrepancy analysis and compensation for fast Fourier transform based solution of the transport of intensity equation [J]. Optics Express, 2014, 22(14): 17172. doi:  10.1364/OE.22.017172
[232] ZUO C, CHEN Q, YU Y, et al. Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter - Theory and applications [J]. Optics Express, 2013, 21(5): 5346-5362. doi:  10.1364/OE.21.005346
[233] SUN J, ZUO C, CHEN Q. Iterative optimum frequency combination method for high efficiency phase imaging of absorptive objects based on phase transfer function [J]. Optics Express, 2015, 23(21): 28031. doi:  10.1364/OE.23.028031
[234] ZUO C, SUN J, LI J, et al. High-resolution transport-of-intensity quantitative phase microscopy with annular illumination [J]. Scientific Reports, 2017, 7(1): 7654. doi:  10.1038/s41598-017-06837-1
[235] LI J, CHEN Q, ZHANG J, et al. Efficient quantitative phase microscopy using programmable annular LED illumination [J]. Biomedical Optics Express, 2017, 8(10): 4687-4705. doi:  10.1364/BOE.8.004687
[236] LI J, CHEN Q, SUN J, et al. Optimal illumination pattern for transport-of-intensity quantitative phase microscopy [J]. Optics Express, 2018, 26(21): 27599. doi:  10.1364/OE.26.027599
[237] ZUO C, CHEN Q, QU W, et al. Noninterferometric single-shot quantitative phase microscopy [J]. Optics Letters, 2013, 38(18): 3538. doi:  10.1364/OL.38.003538
[238] ZUO C, CHEN Q, QU W, et al. High-speed transport-of-intensity phase microscopy with an electrically tunable lens [J]. Optics Express, 2013, 21(20): 24060. doi:  10.1364/OE.21.024060
[239] ZUO C, SUN J, ZHANG J, et al. Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix [J]. Optics Express, 2015, 23(11): 14314. doi:  10.1364/OE.23.014314
[240] LI J, CHEN Q, ZHANG J, et al. Optical diffraction tomography microscopy with transport of intensity equation using a light-emitting diode array [J]. Optics and Lasers in Engineering, 2017, 95: 26-34. doi:  10.1016/j.optlaseng.2017.03.010
[241] LI J, CHEN Q, SUN J, et al. Three-dimensional tomographic microscopy technique with multi-frequency combination with partially coherent illuminations [J]. Biomedical Optics Express, 2018, 9(6): 2526-2542. doi:  10.1364/BOE.9.002526
[242] ZUO C, LI J, SUN J, et al. Transport of intensity equation: A tutorial [J]. Optics and Lasers in Engineering, 2020, 135: 106187. doi:  10.1016/j.optlaseng.2020.106187
[243] HAMILTON D, SHEPPARD C. Differential phase contrast in scanning optical microscopy [J]. Journal of Microscopy, 1984, 133(1): 27. doi:  10.1111/j.1365-2818.1984.tb00460.x
[244] HAMILTON D K, SHEPPARD C J R, WILSON T. Improved imaging of phase gradients in scanning optical microscopy [J]. Journal of Microscopy, 1984, 135(3): 275. doi:  10.1111/j.1365-2818.1984.tb02533.x
[245] MEHTA S B, SHEPPARD C J R. Quantitative phase-gradient imaging at high resolution with asymmetric illumination-based differential phase contrast [J]. Optics Letters, 2009, 34(13): 1924. doi:  10.1364/OL.34.001924
[246] TIAN L, WALLER L. Quantitative differential phase contrast imaging in an LED array microscope [J]. Optics Express, 2015, 23(9): 11394. doi:  10.1364/OE.23.011394
[247] FAN Y, SUN J, CHEN Q, et al. Optimal illumination scheme for isotropic quantitative differential phase contrast microscopy [J]. arXiv preprint, 2019: 1903.10718.
[248] IGLESIAS I. Pyramid phase microscopy [J]. Optics Letters, 2011, 36(18): 3636. doi:  10.1364/OL.36.003636
[249] PARTHASARATHY A B, CHU K K, FORD T N, et al. Quantitative phase imaging using a partitioned detection aperture [J]. Optics Letters, 2012, 37(19): 4062. doi:  10.1364/OL.37.004062
[250] LU H, CHUNG J, OU X, et al. Quantitative phase imaging and complex field reconstruction by pupil modulation differential phase contrast [J]. Optics Express, 2016, 24(22): 25345. doi:  10.1364/OE.24.025345
[251] ZUO C, SUN J, FENG S, et al. Programmable aperture microscopy: A computational method for multi-modal phase contrast and light field imaging [J]. Optics and Lasers in Engineering, 2016, 80: 24-31. doi:  10.1016/j.optlaseng.2015.12.012
[252] LIN Y-Z, HUANG K-Y, LUO Y. Quantitative differential phase contrast imaging at high resolution with radially asymmetric illumination [J]. Optics Letters, 2018, 43(12): 2973-2976. doi:  10.1364/OL.43.002973
[253] FAN Y, SUN J, CHEN Q, et al. Wide-field anti-aliased quantitative differential phase contrast microscopy [J]. Optics Express, 2018, 26(19): 25129. doi:  10.1364/OE.26.025129
[254] CHEN H-H, LIN Y-Z, LUO Y. Isotropic differential phase contrast microscopy for quantitative phase bio-imaging [J]. Journal of Biophotonics, 2018, 11(8): e201700364. doi:  10.1002/jbio.201700364
[255] LEE D, RYU S, KIM U, et al. Color-coded LED microscopy for multi-contrast and quantitative phase-gradient imaging [J]. Biomedical Optics Express, 2015, 6(12): 4912. doi:  10.1364/BOE.6.004912
[256] PHILLIPS Z F, CHEN M, WALLER L. Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (CDPC) [J]. PLOS ONE, 2017, 12(2): e0171228. doi:  10.1371/journal.pone.0171228
[257] LEE W, JUNG D, RYU S, et al. Single-exposure quantitative phase imaging in color-coded LED microscopy [J]. Optics Express, 2017, 25(7): 8398. doi:  10.1364/OE.25.008398
[258] FAN Y, SUN J, CHEN Q, et al. Single-shot isotropic quantitative phase microscopy based on color-multiplexed differential phase contrast [J]. APL Photonics, 2019, 4(12): 121301. doi:  10.1063/1.5124535
[259] FORD T N, CHU K K, MERTZ J. Phase-gradient microscopy in thick tissue with oblique back-illumination [J]. Nature Methods, 2012, 9(12): 1195-1197. doi:  10.1038/nmeth.2219
[260] FORD T N, MERTZ J. Video-rate imaging of microcirculation with single-exposure oblique back-illumination microscopy [J]. Journal of Biomedical Optics, 2013, 18(6): 066007. doi:  10.1117/1.JBO.18.6.066007
[261] JUNG D, CHOI J-H, KIM S, et al. Smartphone-based multi-contrast microscope using color-multiplexed illumination[J/OL]. Scientific Reports, 2017, 7(1): 7564. [2019–06–05]. http://www.nature.com/articles/s41598-017-07703-w.
[262] ZHENG G, SHEN C, JIANG S, et al. Concept, implementations and applications of Fourier ptychography [J]. Nature Reviews Physics, 2021, 3(3): 207-223. doi:  10.1038/s42254-021-00280-y
[263] ZUO C, CHEN Q, SUN J, et al. Non-interferometric phase retrieval and quantitative phase microscopy based on transport of intensity equation: A review [J]. Chinese Journal of Lasers, 2016, 43(6): 0609002. (in Chinese) doi:  10.3788/CJL201643.0609002
[264] SUN J, Zhang Y, CHEN Q, et al. Fourier ptychographic microscopy: Theory, advances, and applications [J]. Acta Optica Sinica, 2016, 36(10): 89-107. (in Chinese)
[265] FAN Y, CHEN Q, SUN J, et al. Review of the development of differential phase contrast microscopy [J]. Infrared and Laser Engineering, 2019, 48(6): 0603014. (in Chinese) doi:  10.3788/IRLA201948.0603014
[266] PAN A, ZUO C, YAO B. High-resolution and large field-of-view Fourier ptychographic microscopy and its applications in biomedicine [J]. Reports on Progress in Physics, 2020, 83(9): 096101. doi:  10.1088/1361-6633/aba6f0
[267] PAN X, LIU C, TAO H, et al. Phase imaging based on ptychography and progress on related key techniques [J]. Acta Optica Sinica, 2020, 40(1): 0111010. (in Chinese) doi:  10.3788/AOS202040.0111010
[268] DEBSKIA W, WALCZYKOWSKIA P, KLEWSKIA A, et al. Analysis of usage of multispectral video technique for distinguishing objects in real time[C]//20th ISPRS Congress, 2004.
[269] BACKMAN V, WALLACE M B, PERELMAN L, et al. Detection of preinvasive cancer cells [J]. Nature, 2000, 406(6791): 35. doi:  10.1038/35017638
[270] YOSHIDA Y, OGUMA H, MORINO I, et al. Mountaintop observation of CO2 absorption spectra using a short wavelength infrared Fourier transform spectrometer [J]. Applied Optics, 2010, 49(1): 71-79. doi:  10.1364/AO.49.000071
[271] ZHAO Z, DENG L, BAI L, et al. Optimal imaging band selection mechanism of weld pool vision based on spectrum analysis [J]. Optics & Laser Technology, 2019, 110: 145-151.
[272] KESTER R T, BEDARD N, GAO L S, et al. Real-time snapshot hyperspectral imaging endoscope [J]. Journal of Biomedical Optics, 2011, 16(5): 056005. doi:  10.1117/1.3574756
[273] SPERLING B A, HOANG J, KIMES W A, et al. Time-resolved surface infrared spectroscopy during atomic layer deposition [J]. Applied Spectroscopy, 2013, 67(9): 1003-1012. doi:  10.1366/13-06995
[274] GOETZ A F, VANE G, SOLOMON J E, et al. Imaging spectrometry for earth remote sensing [J]. Science, 1985, 228(4704): 1147-1153. doi:  10.1126/science.228.4704.1147
[275] OKAMOTO T, YAMAGUCHI I. Simultaneous acquisition of spectral image information [J]. Optics Letters, 1991, 16(16): 1277-1279. doi:  10.1364/OL.16.001277
[276] OKAMOTO T, TAKAHASHI A, YAMAGUCHI I. Simultaneous acquisition of spectral and spatial intensity distribution [J]. Applied Spectroscopy, 1993, 47(8): 1198-1202. doi:  10.1366/0003702934067810
[277] DESCOUR M, DERENIAK E. Computed-tomography imaging spectrometer: experimental calibration and reconstruction results [J]. Applied Optics, 1995, 34(22): 4817-4826. doi:  10.1364/AO.34.004817
[278] CIMINO P, NEESE F, BARONE V. Computational Spectroscopy: Methods, Experiments and Applications[M]. Weinheim: Wiley-VCH, 2010.
[279] WEI R Y, ZHOU J S, JING J J, et al. Developments and trends of the computed tomography imaging spectrometers [J]. Spectroscopy and Spectral Analysis, 2010, 30(10): 2866-2873.
[280] MOONEY J M, VICKERS V E, AN M, et al. High-throughput hyperspectral infrared camera [J]. JOSA A, 1997, 14(11): 2951-2961. doi:  10.1364/JOSAA.14.002951
[281] FANG J, ZHAO D, JIANG Y. New method in imaging spectrometry[C]//Color Science and Imaging Technologies. International Society for Optics and Photonics, 2002: 56–63.
[282] HAGEN N, DERENIAK E L. Analysis of computed tomographic imaging spectrometers. I. Spatial and spectral resolution [J]. Applied Optics, 2008, 47(28): F85-F95. doi:  10.1364/AO.47.000F85
[283] CANDES E, TAO T. Decoding by linear programming [J]. arXiv preprint, 2005: math/0502327.
[284] CANDES E, ROMBERG J, TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information [J]. arXiv preprint, 2004: math/0409186.
[285] BRADY D J, GEHM M E. Compressive imaging spectrometers using coded apertures[C/OL]//Visual Information Processing XV. International Society for Optics and Photonics, 2006: 62460 A. [2019–06–28]. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/6246/62460 A/Compressive-imaging-spectrometers-using-coded-apertures/10.1117/12.667605.short.
[286] KITTLE D, CHOI K, WAGADARIKAR A, et al. Multiframe image estimation for coded aperture snapshot spectral imagers [J]. Applied Optics, 2010, 49(36): 6824-6833. doi:  10.1364/AO.49.006824
[287] MA X, YUAN X, FU C, et al. LED-based compressive spectral-temporal imaging [J]. Optics Express, 2021, 29(7): 10698-10715. doi:  10.1364/OE.419888
[288] CAO X, YUE T, LIN X, et al. Computational snapshot multispectral cameras: Toward dynamic capture of the spectral world [J]. IEEE Signal Processing Magazine, 2016, 33(5): 95-108. doi:  10.1109/MSP.2016.2582378
[289] XUN CAO, HAO DU, XIN TONG, et al. A prism-mask system for multispectral video acquisition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2423-2435. doi:  10.1109/TPAMI.2011.80
[290] COURTIAL J, PATTERSON B, HARVEY A, et al. Design of a static Fourier-transform spectrometer with increased field of view [J]. Applied Optics, 1996, 35(34): 6698-6702. doi:  10.1364/AO.35.006698
[291] ZHANG W, SONG H, HE X, et al. Deeply learned broadband encoding stochastic hyperspectral imaging [J]. Light: Science & Applications, 2021, 10(1): 108. doi:  10.1038/s41377-021-00545-2
[292] DECKER J A, HARWIT M. Experimental operation of a Hadamard spectrometer [J]. Applied Optics, 1969, 8(12): 2552. doi:  10.1364/AO.8.002552
[293] DECKER J A. Experimental realization of the multiplex advantage with a Hadamard-transform spectrometer [J]. Applied Optics, 1971, 10(3): 510. doi:  10.1364/AO.10.000510
[294] YUE J, HAN J, ZHANG Y, et al. Denoising analysis of Hadamard transform spectrometry [J]. Optics Letters, 2014, 39(13): 3744-3747. doi:  10.1364/OL.39.003744
[295] YUE J, HAN J, LI L, et al. Denoising analysis of spatial pixel multiplex coded spectrometer with Hadamard H-matrix [J]. Optics Communications, 2018, 407: 355-360. doi:  10.1016/j.optcom.2017.09.072
[296] ZHAO Z, BAI L, HAN J, et al. High-SNR snapshot multiplex spectrometer with sub-Hadamard-s matrix coding [J]. Optics Communications, 2019, 453: 124322. doi:  10.1016/j.optcom.2019.124322
[297] CHI M, WU Y, QIAN F, et al. Signal-to-noise ratio enhancement of a Hadamard transform spectrometer using a two-dimensional slit-array [J]. Applied Optics, 2017, 56(25): 7188-7193. doi:  10.1364/AO.56.007188
[298] BAI L, WANG X, HAN J, et al. Development review of new spectral measurement technology [J]. Infrared and Laser Engineering, 2019, 48(6): 0603001. (in Chinese) doi:  10.3788/IRLA201948.0603001
[299] FARLOW C A, CHENAULT D B, PEZZANITI J L, et al. Imaging polarimeter development and applications[C/OL]//Polarization Analysis and Measurement IV. International Society for Optics and Photonics, 2002: 118–125. [2019–06–05]. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/4481/0000/Imaging-polarimeter-development-and-applications/10.1117/12.452880.short.
[300] PEZZANITI J L, CHENAULT D B. A division of aperture MWIR imaging polarimeter[C/OL]//Polarization Science and Remote Sensing II. International Society for Optics and Photonics, 2005: 58880 V. [2019–06–28]. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/5888/58880 V/A-division-of-aperture-MWIR-imaging-polarimeter/10.1117/12.623543.short.
[301] Nordin G P, Meier J T, Deguzman P C, et al. Diffractive optical element for Stokes vector measurement with a focal plane array[C]//Polarization: Measurement, Analysis, and Remote Sensing II. SPIE, 1999, 3754: 169-177.
[302] Bickel W S, Bailey W M. Stokes vectors, Mueller matrices, and polarized scattered light [J]. American Journal of Physics, 1985, 53(5): 468-478. doi:  10.1119/1.14202
[303] ESPINOSA-LUNA R. Scattering by rough surfaces in a conical configuration: Experimental Mueller matrix [J]. Optics Letters, 2002, 27(17): 1510-1512. doi:  10.1364/OL.27.001510
[304] TYO J S, ROWE M P, PUGH E N, et al. Target detection in optically scattering media by polarization-difference imaging [J]. Applied Optics, 1996, 35(11): 1855-1870. doi:  10.1364/AO.35.001855
[305] LIANG J, ZHANG W, REN L, et al. Polarimetric dehazing method for visibility improvement based on visible and infrared image fusion [J]. Applied Optics, 2016, 55(29): 8221-8226. doi:  10.1364/AO.55.008221
[306] SCHECHNER Y Y, KARPEL N. Recovery of underwater visibility and structure by polarization analysis [J]. IEEE Journal of Oceanic Engineering, 2005, 30(3): 570-587. doi:  10.1109/JOE.2005.850871
[307] MUDGE J, VIRGEN M. Real time polarimetric dehazing [J]. Applied Optics, 2013, 52(9): 1932-1938. doi:  10.1364/AO.52.001932
[308] ZHANG W, LIANG J, JU H, et al. A robust haze-removal scheme in polarimetric dehazing imaging based on automatic identification of sky region [J]. Optics & Laser Technology, 2016, 86: 145-151. doi:  10.1016/j.optlastec.2016.07.015
[309] WANG H, WANG H, HU H, et al. Automatic underwater polarization imaging without background region or any prior [J]. Optics Express, 2021, 29(20): 31283-31295. doi:  10.1364/OE.434398
[310] WANG H, HU H, JIANG J, et al. Polarization differential imaging in turbid water via Mueller matrix and illumination modulation [J]. Optics Communications, 2021, 499: 127274. doi:  10.1016/j.optcom.2021.127274
[311] HU H, QI P, LI X, et al. Underwater imaging enhancement based on a polarization filter and histogram attenuation prior [J]. Journal of Physics D: Applied Physics, 2021, 54(17): 175102. doi:  10.1088/1361-6463/abdc93
[312] LIU F, LIU F, LIU F, et al. Depolarization index from Mueller matrix descatters imaging in turbid water [J]. Chinese Optics Letters, 2022, 20(2): 022601. doi:  10.3788/COL202220.022601
[313] LIANG J, JU H, ZHANG W, et al. Review of optical polarimetric dehazing technique[J/OL]. 2017, 37(4): 0400001. [2022–02–14]. http://ir.opt.ac.cn/handle/181661/28922.
[314] LIANG J, REN L, JU H, et al. Polarimetric dehazing method for dense haze removal based on distribution analysis of angle of polarization [J]. Optics Express, 2015, 23(20): 26146-26157. doi:  10.1364/OE.23.026146
[315] HU H, LI X, LIU T. Recent advances in underwater image restoration technique based on polarimetric imaging [J]. Infrared and Laser Engineering, 2019, 48(6): 0603006. (in Chinese) doi:  10.3788/IRLA201948.0603006
[316] Crosby F J. Stokes vector component versus elementary factor performance in a target detection algorithm[C]//Polarization: Measurement, Analysis, and Remote Sensing VI. SPIE, 2004, 5432: 1-11.
[317] Cavanaugh D B, Castle K R, Davenport W. Anomaly detection using the hyperspectral polarimetric imaging testbed[C]//Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XII. SPIE, 2006, 6233: 625-637.
[318] Egan W G, Duggin M J. Synthesis of optical polarization signatures of military aircraft[C]//Polarization Analysis and Measurement IV. International Society for Optics and Photonics, 2002, 4481: 188-194.
[319] Egan W G, Liu Q. Polarized MODTRAN 3.7 applied to characterization of ocean color in the presence of aerosols[C]//Polarization Analysis and Measurement IV. International Society for Optics and Photonics, 2002, 4481: 228-241.
[320] Goldstein D H. Polarimetric characterization of federal standard paints[C]//Polarization Analysis, Measurement, and Remote Sensing III. SPIE, 2000, 4133: 112-123.
[321] Le Hors L, Hartemann P, Dolfi D, et al. Phenomenological model of paints for multispectral polarimetric imaging[C]//Targets and Backgrounds VII: Characterization and Representation. SPIE, 2001, 4370: 94-105.
[322] Forssell G, Hedborg-Karlsson E. Measurements of polarization properties of camouflaged objects and of the denial of surfaces covered with cenospheres[C]//Targets and Backgrounds IX: Characterization and Representation. International Society for Optics and Photonics, 2003, 5075: 246-258.
[323] Aron Y, Gronau Y. Polarization in the MWIR: A method to improve target aquisition[C]//Infrared Technology and Applications XXXI. SPIE, 2005, 5783: 653-661.
[324] Cremer F, De Jong W, Schutte K. Infrared polarization measurements and modelling applied to surface laid anti-personnel landmines [J]. Optical Engineering, 2002, 41(5): 1021-1032. doi:  10.1117/1.1467362
[325] KOSHIKAWA K, SHIRAI Y. A model-based recognition of glossy objects using their polarimetrical properties [J]. Advanced Robotics, 1987, 2(2): 137-147. doi:  10.1163/156855387X00129
[326] Wolff L B, Boult T E. Constraining object features using a polarization reflectance model [J]. Phys Based Vis Princ Pract Radiom, 1993, 1: 167.
[327] Miyazaki D, Kagesawa M, Ikeuchi K. Transparent surface modeling from a pair of polarization images [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(1): 73-82. doi:  10.1109/TPAMI.2004.1261080
[328] Duncan D D, Hahn D V, Thomas M E. Physics-based polarimetric BRDF models[C]//Optical Diagnostic Methods for Inorganic Materials III. SPIE, 2003, 5192: 129-140.
[329] YANG P, WEI H, KATTAWAR G W, et al. Sensitivity of the backscattering Mueller matrix to particle shape and thermodynamic phase [J]. Applied Optics, 2003, 42(21): 4389-4395. doi:  10.1364/AO.42.004389
[330] ANDREOU A G, KALAYJIAN Z K. Polarization imaging: principles and integrated polarimeters [J]. IEEE Sensors Journal, 2002, 2(6): 566-576. doi:  10.1109/JSEN.2003.807946
[331] BICKEL W S, DAVIDSON J F, HUFFMAN D R, et al. Application of polarization effects in light scattering: A new biophysical tool [J]. Proceedings of the National Academy of Sciences, 1976, 73(2): 486-490. doi:  10.1073/pnas.73.2.486
[332] JACQUES S L, ROMAN J R, LEE K. Imaging superficial tissues with polarized light [J]. Lasers in Surgery and Medicine, 2000, 26(2): 119-129. doi:  10.1002/(SICI)1096-9101(2000)26:2<119::AID-LSM3>3.0.CO;2-Y
[333] Jacques S L, Samatham R, Isenhath S, et al. Polarized light camera to guide surgical excision of skin cancers[C]//Photonic Therapeutics and Diagnostics IV. SPIE, 2008, 6842: 102-108.
[334] Oldenbourg R, Mei G. New polarized light microscope with precision universal compensator [J]. Journal of Microscopy, 1995, 180(2): 140-147. doi:  10.1111/j.1365-2818.1995.tb03669.x
[335] OLDENBOURG R. New views on polarization microscopy[C]//European Cells and Materials, 2001.
[336] Itoh M, Yamanari M, Yasuno Y, et al. Polarization characteristics of multiple backscattering in human blood cell suspensions [J]. Optical and Quantum Electronics, 2005, 37(13): 1277-1285.
[337] Xia J, Weaver A, Gerrard D E, et al. Monitoring sarcomere structure changes in whole muscle using diffuse light reflectance [J]. Journal of Biomedical Optics, 2006, 11(4): 040504. doi:  10.1117/1.2234278
[338] ANTONELLI M-R, PIERANGELO A, NOVIKOVA T, et al. Mueller matrix imaging of human colon tissue for cancer diagnostics: How monte carlo modeling can help in the interpretation of experimental data [J]. Optics Express, 2010, 18(10): 10200-10208. doi:  10.1364/OE.18.010200
[339] PIERANGELO A, BENALI A, ANTONELLI M-R, et al. Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging [J]. Optics Express, 2011, 19(2): 1582-1593. doi:  10.1364/OE.19.001582
[340] Pierangelo A, Manhas S, Benali A, et al. Ex vivo photometric and polarimetric multilayer characterization of human healthy colon by multispectral Mueller imaging [J]. Journal of Biomedical Optics, 2012, 17(6): 066009. doi:  10.1117/1.JBO.17.6.066009
[341] CHUNG J, JUNG W, HAMMER-WILSON M J, et al. Use of polar decomposition for the diagnosis of oral precancer [J]. Applied Optics, 2007, 46(15): 3038-3045. doi:  10.1364/AO.46.003038
[342] Wood M F, Ghosh N, Moriyama E H, et al. Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo [J]. Journal of Biomedical Optics, 2009, 14(1): 014029. doi:  10.1117/1.3065545
[343] SHUKLA P, PRADHAN A. Mueller decomposition images for cervical tissue: Potential for discriminating normal and dysplastic states [J]. Optics Express, 2009, 17(3): 1600-1609. doi:  10.1364/OE.17.001600
[344] PIERANGELO A, NAZAC A, BENALI A, et al. Polarimetric imaging of uterine cervix: A case study [J]. Optics Express, 2013, 21(12): 14120-14130. doi:  10.1364/OE.21.014120
[345] Wang W, Lim L G, Srivastava S, et al. Roles of linear and circular polarization properties and effect of wavelength choice on differentiation between ex vivo normal and cancerous gastric samples [J]. Journal of Biomedical Optics, 2014, 19(4): 046020. doi:  10.1117/1.JBO.19.4.046020
[346] QI J, YE M, SINGH M, et al. Narrow band 3 × 3 Mueller polarimetric endoscopy [J]. Biomedical Optics Express, 2013, 4(11): 2433-2449. doi:  10.1364/BOE.4.002433
[347] QI J, BARRIÈRE C, WOOD T C, et al. Polarized multispectral imaging in a rigid endoscope based on elastic light scattering spectroscopy [J]. Biomedical Optics Express, 2012, 3(9): 2087-2099. doi:  10.1364/BOE.3.002087
[348] HE C, HE H, CHANG J, et al. Polarisation optics for biomedical and clinical applications: A review [J]. Light: Science & Applications, 2021, 10(1): 194. doi:  10.1038/s41377-021-00639-x
[349] QI J, HE H, LIN J, et al. Assessment of tissue polarimetric properties using Stokes polarimetric imaging with circularly polarized illumination [J]. Journal of Biophotonics, 2018, 11(4): e201700139. doi:  10.1002/jbio.201700139
[350] SUN M, HE H, ZENG N, et al. Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters [J]. Biomedical Optics Express, 2014, 5(12): 4223-4234. doi:  10.1364/BOE.5.004223
[351] HEE M R, HUANG D, SWANSON E A, et al. Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging [J]. JOSA B, 1992, 9(6): 903-908. doi:  10.1364/JOSAB.9.000903
[352] FAN C, YAO G. Imaging myocardial fiber orientation using polarization sensitive optical coherence tomography [J]. Biomedical Optics Express, 2013, 4(3): 460-465. doi:  10.1364/BOE.4.000460
[353] Brewster D. X. On the communication of the structure of doubly refracting crystals to glass, muriate of soda, fluor spar, and other substances, by mechanical compression and dilatation. By David Brewster, LL. DFRS Lond. and Edin. In a letter addressed to the Right Hon. Sir Joseph Banks, Bart. G. C. B. P. R S. [J]. Philosophical Transactions of the Royal Society of London, 1816(106): 156-178.
[354] Hecker F W, Morche B. Computer-aided measurement of relative retardations in plane photoelasticity[M]//Experimental stress analysis. Dordrecht: Springer, 1986: 535-542.
[355] Sarma A, Pillai S A, Subramanian G, et al. Computerized image processing for whole-field determination of isoclinics and isochromatics [J]. Experimental Mechanics, 1992, 32(1): 24-29. doi:  10.1007/BF02317980
[356] Kihara T. Automatic whole-field measurement of principal stress directions using three wavelengths[C]//Proc 10th Int Conf on Experimental Mechanics, Lisbon, 1994: 95-99.
[357] Mangal S K, Ramesh K. Use of multiple loads to extract continuous isoclinic fringes by phase shifting technique [J]. Strain, 1999, 35(1): 15-17. doi:  10.1111/j.1475-1305.1999.tb01114.x
[358] Almeida Magalhaes C, Americo Almeida Magalhaes Jr P. New numerical methods for the photoelastic technique with high accuracy [J]. Journal of Applied Physics, 2012, 112(8): 083111. doi:  10.1063/1.4761979
[359] ALMEIDA MAGALHÃES C, SMITH NETO P, ALMEIDA MAGALHÃES JÚNIOR P A, et al. Separation of isochromatics and isoclinics phasemaps for the photoelastic technique with use phase shifting and a large number of high precision images [J]. Metrology and Measurement Systems, 2013, 20(1): 127-138. doi:  10.2478/mms-2013-0012
[360] AJOVALASIT A, PETRUCCI G. Analisi automatica delle frange fotoelastiche in luce bianca[C]//Proceedings of the XVIII AIAS Conference, 1990.
[361] CARAZO-ALVAREZ J, HAAKE S J, PATTERSON E A. Completely automated photoelastic fringe analysis [J]. Optics and Lasers in Engineering, 1994, 21(3): 133-149. doi:  10.1016/0143-8166(94)90067-1
[362] Ajovalasit A, Barone S, Petrucci G. Towards RGB photoelasticity: Full-field automated photoelasticity in white light [J]. Experimental Mechanics, 1995, 35(3): 193-200. doi:  10.1007/BF02319657
[363] YONEYAMA S, TAKASHI M. A new method for photoelastic fringe analysis from a single image using elliptically polarized white light [J]. Optics and Lasers in Engineering, 1998, 30(5): 441-459. doi:  10.1016/S0143-8166(98)00037-2
[364] YONEYAMA S, SHIMIZU M, GOTOH J, et al. Photoelastic analysis with a single tricolor image [J]. Optics and Lasers in Engineering, 1998, 29(6): 423-435. doi:  10.1016/S0143-8166(97)00107-3
[365] NURSE A D. Automated photoelasticity: Weighted least-squares determination of field stresses [J]. Optics and Lasers in Engineering, 1999, 31(5): 353-370. doi:  10.1016/S0143-8166(99)00033-0
[366] QUIROGA J A, GARCÍA-BOTELLA Á, GÓMEZ-PEDRERO J A. Improved method for isochromatic demodulation by RGB calibration [J]. Applied Optics, 2002, 41(17): 3461-3468. doi:  10.1364/AO.41.003461
[367] Cline R A, Westerveld W B, Risley J S. A new method for measuring the retardation of a photoelastic modulator using single photon counting techniques [J]. Review of Scientific Instruments, 1993, 64(5): 1169-1174. doi:  10.1063/1.1144113
[368] ZENG A, LI F, ZHU L, et al. Simultaneous measurement of retardance and fast axis angle of a quarter-wave plate using one photoelastic modulator [J]. Applied Optics, 2011, 50(22): 4347-4352. doi:  10.1364/AO.50.004347
[369] WOODHAM R J. Photometric method for determining surface orientation from multiple images [J]. Optical Engineering, 1980, 19(1): 191139.
[370] CHRISTENSEN P H, SHAPIRO L G. Three-dimensional shape from color photometric stereo [J]. International Journal of Computer Vision, 1994, 13(2): 213-227. doi:  10.1007/BF01427152
[371] DERESIEWICZ H, SKALAK R. On uniqueness in dynamic poroelasticity [J]. Bulletin of the Seismological Society of America, 1963, 53(4): 783-788. doi:  10.1785/BSSA0530040783
[372] COLEMAN JR E N, JAIN R. Obtaining 3-dimensional shape of textured and specular surfaces using four-source photometry [J]. Computer Graphics and Image Processing, 1982, 18(4): 309-328. doi:  10.1016/0146-664X(82)90001-6
[373] PARK J-S, TOU J T. Highlight separation and surface orientations for 3-D specular objects[C]//IEEE Proceedings. 10 th International Conference on Pattern Recognition, 1990: 331–335.
[374] IKEUCHI K. Determining surface orientations of specular surfaces by using the photometric stereo method [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1981, 3(6): 661-669.
[375] WU T-P, TANG C-K. Dense photometric stereo using a mirror sphere and graph cut[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). IEEE, 2005: 140–147.
[376] MOZEROV M G, VAN DE WEIJER J. Accurate stereo matching by two-step energy minimization [J]. IEEE Transactions on Image Processing, 2015, 24(3): 1153-1163. doi:  10.1109/TIP.2015.2395820
[377] GEIGER A, ROSER M, URTASUN R. Efficient large-scale stereo matching[C]//Asian Conference on Computer Vision. Springer, 2010: 25–38.
[378] TAN X, SUN C, WANG D, et al. Soft cost aggregation with multi-resolution fusion[C]//European Conference on Computer Vision. Springer, 2014: 17–32.
[379] YANG Q, YANG R, DAVIS J, et al. Spatial-depth super resolution for range images[C]//2007 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2007: 1–8.
[380] YOON K-J, KWEON I S. Adaptive support-weight approach for correspondence search [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2006, 28(4): 650-656.
[381] HOSNI A, RHEMANN C, BLEYER M, et al. Fast cost-volume filtering for visual correspondence and beyond [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 35(2): 504-511.
[382] YANG Q, WANG L, YANG R, et al. Stereo matching with color-weighted correlation, hierarchical belief propagation, and occlusion handling [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 31(3): 492-504.
[383] KLAUS A, SORMANN M, KARNER K. Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure[C]//18th International Conference on Pattern Recognition (ICPR’06). IEEE, 2006: 15–18.
[384] BERTOZZI M, BROGGI A. GOLD: A parallel real-time stereo vision system for generic obstacle and lane detection [J]. IEEE Transactions on Image Processing, 1998, 7(1): 62-81. doi:  10.1109/83.650851
[385] LOOP C, ZHANG Z. Computing rectifying homographies for stereo vision[C]//Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149), 1999: 125–131.
[386] GEHRIG S K, EBERLI F, MEYER T. A real-time low-power stereo vision engine using semi-global matching[C]//International Conference on Computer Vision Systems. Springer, 2009: 134–143.
[387] SHIM H, LEE S. Performance evaluation of time-of-flight and structured light depth sensors in radiometric/geometric variations [J]. Optical Engineering, 2012, 51(9): 094401.
[388] YU L, Zhang D, Yu B, et al. Research of 3 D laser scanning measurement system for mining [J]. Metal Mine, 2012(10): 101-103+107. (in Chinese)
[389] KOU L, ZHANG L, ZHANG K, et al. A multi-focus image fusion method via region mosaicking on Laplacian pyramids [J]. PloS ONE, 2018, 13(5): e0191085. doi:  10.1371/journal.pone.0191085
[390] DORRINGTON A A, KELLY C B D, MCCLURE S H, et al. Advantages of 3 D time-of-flight range imaging cameras in machine vision applications[C]// The 16th Electronics New Zealand Conference (ENZCon), 2009: 95–99.
[391] GANAPATHI V, PLAGEMANN C, KOLLER D, et al. Real time motion capture using a single time-of-flight camera[C/OL]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA: IEEE, 2010: 755–762. [2019–06–04]. http://ieeexplore.ieee.org/document/5540141/.
[392] HSU S, ACHARYA S, RAFII A, et al. Performance of a Time-of-Flight Range Camera for Intelligent Vehicle Safety Applications[M]//Advanced Microsystems for Automotive Applications. Berlin: Springer, 2006: 205–219.
[393] HAHNE U, ALEXA M. Depth imaging by combining time-of-flight and on-demand stereo[C]//Workshop on Dynamic 3 D Imaging. Springer, 2009: 70–83.
[394] SCHUON S, THEOBALT C, DAVIS J, et al. High-quality scanning using time-of-flight depth superresolution[C]//2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. IEEE, 2008: 1–7.
[395] CUI Y, SCHUON S, THRUN S, et al. Algorithms for 3 d shape scanning with a depth camera [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 35(5): 1039-1050.
[396] ZHANG Z, ZHANG J. Solutions and core techniques of city modeling [J]. World Sci-Tech R& D, 2003(3): 23-29. doi:  10.16507/j.issn.1006-6055.2003.03.006
[397] 王继周, 李成名, 林宗坚. 城市三维数据获取技术发展探讨[J]. 测绘科学, 2004, 29(4): 71-73, 86. doi:  10.3771/j.issn.1009-2307.2004.04.023
[398] GAO Z. The Research of terrestrial Laser Scanning Data Processing and Modeling[D]. Xi’an: Chang'an University, 2010.
[399] FANG W, Research on Automatic Texture mapping of terrestrial laser scanning data combining photogrammetry techniques[D]. Wuhan: Wuhan University, 2014.
[400] NAYAR S K, WATANABE M, NOGUCHI M. Real-time focus range sensor [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(12): 1186-1198. doi:  10.1109/34.546256
[401] WATANABE M, NAYAR S K. Rational filters for passive depth from defocus [J]. International Journal of Computer Vision, 1998, 27(3): 203-225. doi:  10.1023/A:1007905828438
[402] GENG J. Structured-light 3D surface imaging: a tutorial [J]. Advances in Optics and Photonics, 2011, 3(2): 128-160. doi:  10.1364/AOP.3.000128
[403] ZUO C, FENG S, HUANG L, et al. Phase shifting algorithms for fringe projection profilometry: A j. [J]. Optics and Lasers in Engineering, 2018, 109: 23-59. doi:  10.1016/j.optlaseng.2018.04.019
[404] GORTHI S S, RASTOGI P. Fringe projection techniques: Whither we are? [J]. Optics & Lasers in Engineering, 2010, 48(2): 133-140.
[405] REICH C, RITTER R, THESING J. 3-D shape measurement of complex objects by combining photogrammetry and fringe projection [J]. Optical Engineering, 2000, 39(1): 224-232. doi:  10.1117/1.602356
[406] HUANG P S, ZHANG C, CHIANG F-P. High-speed 3-D shape measurement based on digital fringe projection [J]. Optical Engineering, 2003, 42(1): 163-169. doi:  10.1117/1.1525272
[407] PAN B, KEMAO Q, HUANG L, et al. Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting digital fringe projection profilometry [J]. Optics Letters, 2009, 34(4): 416-418. doi:  10.1364/OL.34.000416
[408] QUAN C, HE X, WANG C, et al. Shape measurement of small objects using LCD fringe projection with phase shifting [J]. Optics Communications, 2001, 189(1-3): 21-29. doi:  10.1016/S0030-4018(01)01038-0
[409] ZHANG Z, TOWERS C E, TOWERS D P. Time efficient color fringe projection system for 3D shape and color using optimum 3-frequency Selection. [J]. Optics Express, 2006, 14(14): 6444-6455. doi:  10.1364/OE.14.006444
[410] WANG Z, NGUYEN D A, BARNES J C. Some practical considerations in fringe projection profilometry [J]. Optics & Lasers in Engineering, 2010, 48(2): 218-225.
[411] PAN J, HUANG P S, CHIANG F-P. Color-coded binary fringe projection technique for 3-D shape measurement [J]. Optical Engineering, 2005, 44(2): 023606. doi:  10.1117/1.1840973
[412] KÜHMSTEDT P, MUNCKELT C, HEINZE M, et al. 3D shape measurement with phase correlation based fringe projection[C]//Optical Measurement Systems for Industrial Inspection V. International Society for Optics and Photonics, 2007: 66160B.
[413] ZHANG Z. Review of single-shot 3 D shape measurement by phase calculation-based fringe projection techniques [J]. Optics and Lasers in Engineering, 2012, 50(8): 1097-1106. doi:  10.1016/j.optlaseng.2012.01.007
[414] LIU H C, HALIOUA M, SRINIVASAN V. Automated phase-measuring profilometry of 3-D diffuse objects [J]. Applied Optics, 1984, 23(18): 3105. doi:  10.1364/AO.23.003105
[415] SU X, CHEN W. Fourier transform profilometry: A review [J]. Optics and lasers in Engineering, 2001, 35(5): 263-284. doi:  10.1016/S0143-8166(01)00023-9
[416] SU X, ZHANG Q. Dynamic 3-D shape measurement method: A review [J]. Optics & Lasers in Engineering, 2010, 48(2): 191-204.
[417] KEMAO Q. Two-dimensional windowed Fourier transform for fringe pattern analysis: Principles, applications and implementations [J]. Optics and Lasers in Engineering, 2007, 45(2): 304-317. doi:  10.1016/j.optlaseng.2005.10.012
[418] KEMAO Q. Windowed Fourier transform for fringe pattern analysis [J]. Applied Optics, 2004, 43(13): 2695-2702. doi:  10.1364/AO.43.002695
[419] ZHONG J, WENG J. Spatial carrier-fringe pattern analysis by means of wavelet transform: wavelet transform profilometry [J]. Applied Optics, 2004, 43(26): 4993-4998. doi:  10.1364/AO.43.004993
[420] SU X Y, BALLY G V, VUKICEVIC D. Phase-stepping grating profilometry: utilization of intensity modulation analysis in complex objects evaluation [J]. Optics Communications, 1993, 98(1-3): 141-150. doi:  10.1016/0030-4018(93)90773-X
[421] LI J, HASSEBROOK L G, GUAN C. Optimized two-frequency phase-measuring-profilometry light-sensor temporal-noise sensitivity. [J]. Journal of the Optical Society of America:A Optics Image Science & Vision, 2003, 20(1): 106-115.
[422] ZHANG S. Recent progresses on real-time 3D shape measurement using digital fringe projection techniques [J]. Optics & Lasers in Engineering, 2010, 48(2): 149-158.
[423] VAN DER JEUGHT S, DIRCKX J J. Real-time structured light profilometry: A review [J]. Optics and Lasers in Engineering, 2016, 87: 18-31. doi:  10.1016/j.optlaseng.2016.01.011
[424] ZUO C, HUANG L, ZHANG M, et al. Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review [J]. Optics & Lasers in Engineering, 2016, 85: 84-103.
[425] SU X, CHEN W. Reliability-guided phase unwrapping algorithm: A review [J]. Optics and Lasers in Engineering, 2004, 42(3): 245-261. doi:  10.1016/j.optlaseng.2003.11.002
[426] GUTMANN B, WEBER H. Phase unwrapping with the branch-cut method: Role of phase-field direction [J]. Applied Optics, 2000, 39(26): 4802-4816. doi:  10.1364/AO.39.004802
[427] ZAPPA E, BUSCA G. Comparison of eight unwrapping algorithms applied to Fourier-transform profilometry [J]. Optics and Lasers in Engineering, 2008, 46(2): 106-116. doi:  10.1016/j.optlaseng.2007.09.002
[428] GHIGLIA D C, ROMERO L A. Minimum Lp-norm two-dimensional phase unwrapping [J]. JOSA A, 1996, 13(10): 1999-2013. doi:  10.1364/JOSAA.13.001999
[429] TROUVE E, NICOLAS J-M, MAITRE H. Improving phase unwrapping techniques by the use of local frequency estimates [J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(6): 1963-1972. doi:  10.1109/36.729368
[430] ZEBKER H A, LU Y. Phase unwrapping algorithms for radar interferometry: residue-cut, least-squares, and synthesis algorithms [J]. JOSA A, 1998, 15(3): 586-598. doi:  10.1364/JOSAA.15.000586
[431] HUNTLEY J M, SALDNER H. Temporal phase-unwrapping algorithm for automated interferogram analysis [J]. Applied Optics, 1993, 32(17): 3047-3052. doi:  10.1364/AO.32.003047
[432] GUSHOV V, SOLODKIN Y N. Automatic processing of fringe patterns in integer interferometers [J]. Optics and Lasers in Engineering, 1991, 14(4-5): 311-324. doi:  10.1016/0143-8166(91)90055-X
[433] SANSONI G, CAROCCI M, RODELLA R. Three-dimensional vision based on a combination of gray-code and phase-shift light projection: analysis and compensation of the systematic errors [J]. Appl Opt, 1999, 38(31): 6565-6573. doi:  10.1364/AO.38.006565
[434] ZHAO H, CHEN W, TAN Y. Phase-unwrapping algorithm for the measurement of three-dimensional object shapes [J]. Applied Optics, 1994, 33(20): 4497-4500. doi:  10.1364/AO.33.004497
[435] CHENG Y-Y, WYANT J C. Two-wavelength phase shifting interferometry [J]. Applied Optics, 1984, 23(24): 4539-4543. doi:  10.1364/AO.23.004539
[436] CREATH K, CHENG Y-Y, WYANT J C. Contouring aspheric surfaces using two-wavelength phase-shifting interferometry [J]. Optica Acta:International Journal of Optics, 1985, 32(12): 1455-1464. doi:  10.1080/713821689
[437] BURKE J, BOTHE T, OSTEN W, et al. Reverse engineering by fringe projection[C]//Interferometry XI: Applications. International Society for Optics and Photonics, 2002: 312–325.
[438] DING Y, XI J, YU Y, et al. Recovering the absolute phase maps of two fringe patterns with selected frequencies [J]. Optics Letters, 2011, 36(13): 2518-2520. doi:  10.1364/OL.36.002518
[439] FALAGGIS K, TOWERS D P, TOWERS C E. Algebraic solution for phase unwrapping problems in multiwavelength interferometry [J]. Applied Optics, 2014, 53(17): 3737-3747. doi:  10.1364/AO.53.003737
[440] PETKOVIĆ T, PRIBANIĆ T, DJONLIĆ M. Temporal phase unwrapping using orthographic projection [J]. Optics and Lasers in Engineering, 2017, 90: 34-47. doi:  10.1016/j.optlaseng.2016.09.006
[441] XING S, GUO H. Temporal phase unwrapping for fringe projection profilometry aided by recursion of Chebyshev polynomials [J]. Applied Optics, 2017, 56(6): 1591-1602. doi:  10.1364/AO.56.001591
[442] SANSONI G, CORINI S, LAZZARI S, et al. Three-dimensional imaging based on Gray-code light projection: characterization of the measuring algorithm and development of a measuring system for industrial applications [J]. Applied Optics, 1997, 36(19): 4463-4472. doi:  10.1364/AO.36.004463
[443] LI Z, SHI Y, WANG C, et al. Accurate calibration method for a structured light system [J]. Optical Engineering, 2008, 47(5): 053604. doi:  10.1117/1.2931517
[444] SALDNER H O, HUNTLEY J M. Temporal phase unwrapping: Application to surface profiling of discontinuous objects [J]. Applied Optics, 1997, 36(13): 2770-2775. doi:  10.1364/AO.36.002770
[445] MARTINEZ-CELORIO R A, DAVILA A, KAUFMANN G H, et al. Extension of the displacement measurement range for electronic speckle-shearing pattern interferometry using carrier fringes and a temporal-phase-unwrapping method [J]. Optical Engineering, 2000, 39(3): 751-758. doi:  10.1117/1.602423
[446] HUANG L, ASUNDI A K. Phase invalidity identification framework with the temporal phase unwrapping method [J]. Measurement Science and Technology, 2011, 22(3): 035304. doi:  10.1088/0957-0233/22/3/035304
[447] TIAN J, PENG X, ZHAO X. A generalized temporal phase unwrapping algorithm for three-dimensional profilometry [J]. Optics and Lasers in Engineering, 2008, 46(4): 336-342. doi:  10.1016/j.optlaseng.2007.11.002
[448] PEDRINI G, ALEXEENKO I, OSTEN W, et al. Temporal phase unwrapping of digital hologram sequences [J]. Applied Optics, 2003, 42(29): 5846-5854. doi:  10.1364/AO.42.005846
[449] WEISE T, LEIBE B, VAN GOOL L. Fast 3D Scanning with automatic motion compensation[C]//CVPR’07. IEEE Conference on Computer Vision and Pattern Recognition, 2007.
[450] QIAN J, TAO T, FENG S, et al. Motion-artifact-free dynamic 3D shape measurement with hybrid Fourier-transform phase-shifting profilometry [J]. Optics Express, 2019, 27(3): 2713. doi:  10.1364/OE.27.002713
[451] TAO T, CHEN Q, FENG S, et al. High-speed real-time 3D shape measurement based on adaptive depth constraint [J]. Optics Express, 2018, 26(17): 22440. doi:  10.1364/OE.26.022440
[452] TAO T, CHEN Q, FENG S, et al. High-precision real-time 3D shape measurement based on a quad-camera system [J]. Journal of Optics, 2018, 20(1): 014009. doi:  10.1088/2040-8986/aa9e0f
[453] TAO T, CHEN Q, DA J, et al. Real-time 3-D shape measurement with composite phase-shifting fringes and multi-view system [J]. Optics Express, 2016, 24(18): 20253-20269. doi:  10.1364/OE.24.020253
[454] BRÄUERBURCHARDT C, MUNKELT C, HEINZE M, et al. Using geometric constraints to solve the point correspondence problem in fringe projection based 3D measuring systems[C]//International Conference on Image Analysis and Processing. 2011.
[455] LI Z, ZHONG K, LI Y F, et al. Multiview phase shifting: A full-resolution and high-speed 3D measurement framework for arbitrary shape dynamic objects [J]. Optics Letters, 2013, 38(9): 1389-1391. doi:  10.1364/OL.38.001389
[456] QIAN J, FENG S, TAO T, et al. High-resolution real-time 360° 3D model reconstruction of a handheld object with fringe projection profilometry [J]. Optics Letters, 2019, 44(23): 5751. doi:  10.1364/OL.44.005751
[457] QIAN J, FENG S, XU M, et al. High-resolution real-time 360° 3D surface defect inspection with fringe projection profilometry [J]. Optics and Lasers in Engineering, 2021, 137: 106382. doi:  10.1016/j.optlaseng.2020.106382
[458] ZHOU P, GOODSON K E. Subpixel displacement and deformation gradient measurement using digital image/speckle correlation [J]. Optical Engineering, 2001, 40(8): 1613-1621. doi:  10.1117/1.1387992
[459] ZHANG J, JIN G, MA S, et al. Application of an improved subpixel registration algorithm on digital speckle correlation measurement [J]. Optics & Laser Technology, 2003, 35(7): 533-542.
[460] FENG S, CHEN Q, GU G, et al. Fringe pattern analysis using deep learning [J]. Advanced Photonics, 2019, 1(2): 1. doi:  10.1117/1.AP.1.2.025001
[461] FENG S, ZUO C, HU Y, et al. Deep-learning-based fringe-pattern analysis with uncertainty estimation [J]. Optica, 2021, 8(12): 1507-1510. doi:  10.1364/OPTICA.434311
[462] FENG S, ZUO C, YIN W, et al. Micro deep learning profilometry for high-speed 3D surface imaging[J/OL]. Optics and Lasers in Engineering, 2019, 121: 416–427. [2019–12–20]. https://linkinghub.elsevier.com/retrieve/pii/S0143816619302015.
[463] QIAN J, FENG S, TAO T, et al. Deep-learning-enabled geometric constraints and phase unwrapping for single-shot absolute 3 D shape measurement[J/OL]. APL Photonics, 2020, 5(4): 046105. [2020–06–23]. http://aip.scitation.org/doi/10.1063/5.0003217. DOI: 10.1063/5.0003217.
[464] QIAN J, FENG S, LI Y, et al. Single-shot absolute 3D shape measurement with deep-learning-based color fringe projection profilometry [J]. Optics Letters, 2020, 45(7): 1842-1845. doi:  10.1364/OL.388994
[465] LI Y, QIAN J, FENG S, et al. Composite fringe projection deep learning profilometry for single-shot absolute 3D shape measurement[J/OL]. Optics Express, 2022, 30(3): 3424. [2022–02–13]. https://opg.optica.org/abstract.cfm?URI=oe-30-3-3424.
[466] VAN DER JEUGHT S, DIRCKX J J J. Deep neural networks for single shot structured light profilometry[J/OL]. Optics Express, 2019, 27(12): 17091. [2020–07–19]. https://www.osapublishing.org/abstract.cfm?URI=oe-27-12-17091.
[467] NGUYEN H, WANG Y, WANG Z. Single-shot 3D shape reconstruction using structured light and deep convolutional neural networks[J/OL]. Sensors, 2020, 20(13): 3718. [2020–07–08]. https://www.mdpi.com/1424-8220/20/13/3718.
[468] ZHENG Y, WANG S, LI Q, et al. Fringe projection profilometry by conducting deep learning from its digital twin[J/OL]. Optics Express, 2020, 28(24): 36568. [2021–05–08]. https://www.osapublishing.org/abstract.cfm?URI=oe-28-24-36568.
[469] YIN W, HU Y, FENG S, et al. Single-shot 3D shape measurement using an end-to-end stereo matching network for speckle projection profilometry [J]. Optics Express, 2021, 29(9): 13388-13407. doi:  10.1364/OE.418881
[470] QIAO G, HUANG Y, SONG Y, et al. A single-shot phase retrieval method for phase measuring deflectometry based on deep learning [J]. Optics Communications, 2020, 476: 126303. doi:  10.1016/j.optcom.2020.126303
[471] ZHOU W, SONG Y, QU X, et al. Fourier transform profilometry based on convolution neural network[C/OL]. HAN S, YOSHIZAWA T, ZHANG S. Optical Metrology and Inspection for Industrial Applications V. Beijing, China: SPIE, 2018: 62. [2020–03–15]. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10819/2500884/Fourier-transform-profilometry-based-on-convolution-neural-network/10.1117/12.2500884.full.
[472] YANG T, ZHANG Z, LI H, et al. Single-shot phase extraction for fringe projection profilometry using deep convolutional generative adversarial network [J]. Measurement Science and Technology, 2020, 32(1): 015007. doi:  10.1088/1361-6501/aba5c5
[473] YAN K, YU Y, HUANG C, et al. Fringe pattern denoising based on deep learning[J/OL]. Optics Communications, 2019, 437: 148–152. [2021–11–29]. https://linkinghub.elsevier.com/retrieve/pii/S0030401818311076.
[474] GERSHUN A. The light field [J]. Journal of Mathematics and Physics, 1939, 18(1-4): 51-151. doi:  10.1002/sapm193918151
[475] ADELSON E H, WANG J Y A. Single lens stereo with a plenoptic camera [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 99-106. doi:  10.1109/34.121783
[476] NG R, LEVOY M, BREDIF M, et al. Light field photography with a hand-held plenoptic camera[D]. California: Stanford University, 2005.
[477] PERWASS C, WIETZKE L. Single lens 3D-camera with extended depth-of-field[C/OL]. [2019–06–04]. http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.909882.
[478] HEINZE C, SPYROPOULOS S, HUSSMANN S, et al. Automated robust metric calibration algorithm for multifocus plenoptic cameras [J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(5): 1197-1205. doi:  10.1109/TIM.2015.2507412
[479] LEVOY M, HANRAHAN P. Light field rendering[C/OL]//Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques - SIGGRAPH ’96. Not Known: ACM Press, 1996: 31–42. [2019–05–10]. http://portal.acm.org/citation.cfm?doid=237170.237199.
[480] YANG J C, EVERETT M, BUEHLER C, et al. A real-time distributed light field camera. [J]. Rendering Techniques, 2002, 2002: 77-86.
[481] WILBURN B, JOSHI N, VAISH V, et al. High performance imaging using large camera arrays[C/OL]//ACM SIGGRAPH 2005 Papers. New York, NY, USA: ACM, 2005: 765–776. [2019–06–05]. http://doi.acm.org/10.1145/1186822.1073259.
[482] LIN X, WU J, ZHENG G, et al. Camera array based light field microscopy [J]. Biomedical Optics Express, 2015, 6(9): 3179-3189. doi:  10.1364/BOE.6.003179
[483] VEERARAGHAVAN A, RASKAR R, AGRAWAL A, et al. Dappled photography: Mask enhanced cameras for heterodyned light fields and coded aperture refocusing [J]. ACM Trans Graph, 2007, 26(3): 69. doi:  10.1145/1276377.1276463
[484] MARWAH K, WETZSTEIN G, BANDO Y, et al. Compressive light field photography using overcomplete dictionaries and optimized projections [J]. ACM Transactions on Graphics, 2013, 32(4): 1-12. doi:  10.1145/2461912.2461914
[485] LIANG C-K, LIN T-H, WONG B-Y, et al. Programmable aperture photography: Multiplexed light field acquisition [M]//ACM SIGGRAPH 2008 papers. 2008: 1-10.
[486] ORTH A, CROZIER K B. Light field moment imaging [J]. Optics Letters, 2013, 38(15): 2666. doi:  10.1364/OL.38.002666
[487] PARK J-H, LEE S-K, JO N-Y, et al. Light ray field capture using focal plane sweeping and its optical reconstruction using 3D displays [J]. Optics Express, 2014, 22(21): 25444. doi:  10.1364/OE.22.025444
[488] CHEN N, REN Z, LI D, et al. Analysis of the noise in backprojection light field acquisition and its optimization [J]. Applied Optics, 2017, 56(13): F20. doi:  10.1364/AO.56.000F20
[489] LU C-H, MUENZEL S, FLEISCHER J W. High-resolution light-field imaging via phase space retrieval [J]. Applied Optics, 2019, 58(5): A142. doi:  10.1364/AO.58.00A142
[490] CHEN N, ZUO C. 3D imaging technology based on depth measurement [J]. Infrared and Laser Engineering, 2019, 48(6): 0603013. (in Chinese) doi:  10.3788/IRLA201948.0603013
[491] XIAO X, WANG Z, SUN C, et al. Research on focusing and ranging method based on light field camera technology [J]. Acta Photonica Sinica, 2008, 37(12): 2539. (in Chinese)
[492] VAISH V, GARG G, TALVALA E, et al. Synthetic aperture focusing using a shear-warp factorization of the viewing transform[C/OL]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). San Diego, CA, USA: IEEE, 2005: 129. [2019–06–04]. http://ieeexplore.ieee.org/document/1565441/.
[493] Godfrey Hounsfield[Z/OL]. (2019–04–15)[2019–06–28].https://en.wikipedia.org/w/index.php?title=Godfrey_Hounsfield&oldid=892611195.
[494] RADON J. On the determination of functions from their integral values along certain manifolds [J]. IEEE Transactions on Medical Imaging, 1986, 5(4): 170-176. doi:  10.1109/TMI.1986.4307775
[495] Allan MacLeod Cormack[Z/OL]. (2019–06–04)[2019–06–29]. https://en.wikipedia.org/w/index.php?title=Allan_MacLeod_Cormack&oldid=900263100.
[496] Isidor Isaac Rabi - Wikipedia[EB/OL]. [2019–06–29]. https://en.wikipedia.org/wiki/Isidor_Isaac_Rabi.
[497] Nuclear magnetic resonance - Wikipedia[EB/OL]. [2019–06–29]. https://en.wikipedia.org/wiki/Nuclear_magnetic_resonance.
[498] WEBB R H. Confocal optical microscopy [J]. Reports on Progress in Physics, 1996, 59(3): 427. doi:  10.1088/0034-4885/59/3/003
[499] DIASPRO A. Confocal and Two-Photon Microscopy: Foundations, Applications and Advances[M/OL]. New York : Wiley-Liss, 2002. http://adsabs.harvard.edu/abs/2001 ctmf.book.....D.
[500] ZIPFEL W R, WILLIAMS R M, WEBB W W. Nonlinear magic: Multiphoton microscopy in the biosciences [J]. Nature Biotechnology, 2003, 21(11): 1369-1377. doi:  10.1038/nbt899
[501] OLARTE O E, ANDILLA J, GUALDA E J, et al. Light-sheet microscopy: A tutorial [J]. Advances in Optics and Photonics, 2018, 10(1): 111. doi:  10.1364/AOP.10.000111
[502] SARDER P, NEHORAI A. Deconvolution methods for 3-D fluorescence microscopy images [J]. IEEE Signal Processing Magazine, 2006, 23(3): 32-45. doi:  10.1109/MSP.2006.1628876
[503] WEINSTEIN M, CASTLEMAN K R. Reconstructing 3-D specimens from 2-D section images[C/OL]//Quantitative Imagery in the Biomedical Sciences I. International Society for Optics and Photonics, 1971: 131–138. [2019–06–29].https://www.spiedigitallibrary.org/conference-proceedings-of-spie/0026/0000/Reconstructing-3-D-Specimens-From-2-D-Section-Images/10.1117/12.975337.short.
[504] AGARD D A. Optical sectioning microscopy: Cellular architecture in three dimensions [J]. Annual Review of Biophysics and Bioengineering, 1984, 13: 191-219. doi:  10.1146/annurev.bb.13.060184.001203
[505] GIBSON S F, LANNI F. Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy [J]. JOSA A, 1992, 9(1): 154-166. doi:  10.1364/JOSAA.9.000154
[506] MONCK J R, OBERHAUSER A F, KEATING T J, et al. Thin-section ratiometric Ca2+ images obtained by optical sectioning of fura-2 loaded mast cells [J]. The Journal of Cell Biology, 1992, 116(3): 745-759. doi:  10.1083/jcb.116.3.745
[507] MCNALLY J G, KARPOVA T, COOPER J, et al. Three-dimensional imaging by deconvolution microscopy [J]. Methods, 1999, 19(3): 373-385. doi:  10.1006/meth.1999.0873
[508] PREZA C, MILLER M I, THOMAS L J, et al. Regularized linear method for reconstruction of three-dimensional microscopic objects from optical sections [J]. Journal of the Optical Society of America A, Optics and Image Science, 1992, 9(2): 219-228. doi:  10.1364/JOSAA.9.000219
[509] DEY N, BLANC-FERAUD L, ZIMMER C, et al. Richardson–lucy algorithm with total variation regularization for 3D confocal microscope deconvolution [J]. Microscopy Research and Technique, 2006, 69(4): 260-266. doi:  10.1002/jemt.20294
[510] VAN KEMPEN G M P, VAN VLIET L J. Background estimation in nonlinear image restoration [J]. Journal of the Optical Society of America A, 2000, 17(3): 425. doi:  10.1364/JOSAA.17.000425
[511] REMMELE S, SEELAND M, HESSER J. Fluorescence Microscopy Deconvolution Based on Bregman Iteration and Richardson-Lucy Algorithm with TV Regularization[M/OL]//Bildverarbeitung Für Die Medizin. Berlin: Springer, 2008: 72–76. [2018–07–20].https://link.springer.com/chapter/10.1007/978-3-540-78640-5_15.
[512] HOLMES T J. Maximum-likelihood image restoration adapted for noncoherent optical imaging [J]. Journal of the Optical Society of America A, 1988, 5(5): 666. doi:  10.1364/JOSAA.5.000666
[513] HOLMES T J. Blind deconvolution of quantum-limited incoherent imagery: Maximum-likelihood approach [J]. Journal of the Optical Society of America A, 1992, 9(7): 1052. doi:  10.1364/JOSAA.9.001052
[514] HOLMES T J, O’CONNOR N J. Blind deconvolution of 3 d transmitted light brightfield micrographs [J]. Journal of Microscopy, 2000, 200(2): 114-127. doi:  10.1046/j.1365-2818.2000.00751.x
[515] MARKHAM J, CONCHELLO J-A. Parametric blind deconvolution: A Robust method for the simultaneous estimation of image and blur [J]. JOSA A, 1999, 16(10): 2377-2391. doi:  10.1364/JOSAA.16.002377
[516] LEVOY M, NG R, ADAMS A, et al. Light Field Microscopy[C/OL]//ACM SIGGRAPH 2006 Papers. New York, USA: ACM, 2006: 924–934. [2019–06–05]. http://doi.acm.org/10.1145/1179352.1141976.
[517] LEVOY M, ZHANG Z, MCDOWALL I. Recording and controlling the 4D light field in a microscope using microlens arrays [J]. Journal of Microscopy, 2009, 235(2): 144-162. doi:  10.1111/j.1365-2818.2009.03195.x
[518] BROXTON M, GROSENICK L, YANG S, et al. Wave optics theory and 3-D deconvolution for the light field microscope [J]. Optics Express, 2013, 21(21): 25418. doi:  10.1364/OE.21.025418
[519] GUO C, LIU W, HUA X, et al. Fourier light-field microscopy [J]. Optics Express, 2019, 27(18): 25573. doi:  10.1364/OE.27.025573
[520] PREVEDEL R, YOON Y-G, HOFFMANN M, et al. Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy [J]. Nature Methods, 2014, 11(7): 727-730. doi:  10.1038/nmeth.2964
[521] PÉGARD N C, LIU H-Y, ANTIPA N, et al. Compressive light-field microscopy for 3D neural activity recording [J]. Optica, 2016, 3(5): 517. doi:  10.1364/OPTICA.3.000517
[522] SKOCEK O, NÖBAUER T, WEILGUNY L, et al. High-speed volumetric imaging of neuronal activity in freely moving rodents [J]. Nature Methods, 2018, 15(6): 429-432. doi:  10.1038/s41592-018-0008-0
[523] LI H, GUO C, KIM-HOLZAPFEL D, et al. Fast, volumetric live-cell imaging using high-resolution light-field microscopy [J]. Biomedical Optics Express, 2019, 10(1): 29. doi:  10.1364/BOE.10.000029
[524] ZHANG Z, BAI L, CONG L, et al. Imaging volumetric dynamics at high speed in mouse and zebrafish brain with confocal light field microscopy [J]. Nature Biotechnology, 2021, 39(1): 74-83. doi:  10.1038/s41587-020-0628-7
[525] WU J, LU Z, JIANG D, et al. Iterative tomography with digital adaptive optics permits hour-long intravital observation of 3D subcellular dynamics at millisecond scale [J]. Cell, 2021, 184(12): 3318-3332. doi:  10.1016/j.cell.2021.04.029
[526] WOLF E. Three-dimensional structure determination of semi-transparent objects from holographic data [J]. Optics Communications, 1969, 1(4): 153-156. doi:  10.1016/0030-4018(69)90052-2
[527] KAK A C, SLANEY M. Principles of Computerized Tomographic Imaging[M/OL]. Philadelphia: SIAM, 2001. [2017–09–25]. http://epubs.siam.org/doi/pdf/10.1137/1.9780898719277.fm.
[528] HAEBERLÉ O, BELKEBIR K, GIOVANINNI H, et al. Tomographic diffractive microscopy: Basics, techniques and perspectives [J]. Journal of Modern Optics, 2010, 57(9): 686-699. doi:  10.1080/09500340.2010.493622
[529] RAPPAZ B, MARQUET P, CUCHE E, et al. Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy [J]. Optics Express, 2005, 13(23): 9361-9373. doi:  10.1364/OPEX.13.009361
[530] LAUER V. New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope [J]. Journal of Microscopy, 2002, 205(2): 165-176. doi:  10.1046/j.0022-2720.2001.00980.x
[531] CHOI W. Tomographic phase microscopy and its biological applications[J/OL]. 3D Research, 2012, 3(4): 1-11. [2017–11–20]. http://link.springer.com/10.1007/3 DRes.04(2012)5.
[532] CHARRIÈRE F, MARIAN A, MONTFORT F, et al. Cell refractive index tomography by digital holographic microscopy [J]. Optics Letters, 2006, 31(2): 178. doi:  10.1364/OL.31.000178
[533] CHARRIÈRE F, PAVILLON N, COLOMB T, et al. Living specimen tomography by digital holographic microscopy: Morphometry of testate amoeba [J]. Optics Express, 2006, 14(16): 7005. doi:  10.1364/OE.14.007005
[534] CHOI W, FANG-YEN C, BADIZADEGAN K, et al. Tomographic phase microscopy [J]. Nature Methods, 2007, 4(9): 717-719. doi:  10.1038/nmeth1078
[535] SUNG Y, CHOI W, FANG-YEN C, et al. Optical diffraction tomography for high resolution live cell imaging [J]. Optics Express, 2009, 17(1): 266-277. doi:  10.1364/OE.17.000266
[536] KIM K, YOON H, DIEZ-SILVA M, et al. High-resolution three-dimensional imaging of red blood cells parasitized by plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography [J]. Journal of Biomedical Optics, 2013, 19(1): 011005. doi:  10.1117/1.JBO.19.1.011005
[537] COTTE Y, TOY F, JOURDAIN P, et al. Marker-free phase nanoscopy [J]. Nature Photonics, 2013, 7(2): 113-117. doi:  10.1038/nphoton.2012.329
[538] DEVANEY A J. A filtered backpropagation algorithm for diffraction tomography [J]. Ultrasonic Imaging, 1982, 4(4): 336-350. doi:  10.1016/0161-7346(82)90017-7
[539] BARTY A, NUGENT K A, ROBERTS A, et al. Quantitative phase tomography [J]. Optics Communications, 2000, 175(4): 329-336. doi:  10.1016/S0030-4018(99)00726-9
[540] DEVANEY A J. Inverse-scattering theory within the rytov approximation [J]. Optics Letters, 1981, 6(8): 374-376. doi:  10.1364/OL.6.000374
[541] CHEN B, STAMNES J J. Validity of diffraction tomography based on the first born and the first rytov approximations [J]. Applied Optics, 1998, 37(14): 2996-3006. doi:  10.1364/AO.37.002996
[542] DEBAILLEUL M, GEORGES V, SIMON B, et al. High-resolution three-dimensional tomographic diffractive microscopy of transparent inorganic and biological samples [J]. Optics Letters, 2009, 34(1): 79-81. doi:  10.1364/OL.34.000079
[543] FANG-YEN C, CHOI W, SUNG Y, et al. Video-rate tomographic phase microscopy [J]. Journal of Biomedical Optics, 2011, 16(1): 011005. doi:  10.1117/1.3522506
[544] KIM K, KIM K S, PARK H, et al. Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography [J]. Optics Express, 2013, 21(26): 32269. doi:  10.1364/OE.21.032269
[545] JIN D, ZHOU R, YAQOOB Z, et al. Dynamic spatial filtering using a digital micromirror device for high-speed optical diffraction tomography [J]. Optics Express, 2018, 26(1): 428. doi:  10.1364/OE.26.000428
[546] KIM T, ZHOU R, MIR M, et al. White-light diffraction tomography of unlabelled live cells [J]. Nature Photonics, 2014, 8(3): 256-263. doi:  10.1038/nphoton.2013.350
[547] LEE K, KIM K, KIM G, et al. Time-multiplexed structured illumination using a dmd for optical diffraction tomography [J]. Optics Letters, 2017, 42(5): 999. doi:  10.1364/OL.42.000999
[548] ISIKMAN S O, BISHARA W, MAVANDADI S, et al. Lens-free optical tomographic microscope with a large imaging volume on a chip [J]. Proceedings of the National Academy of Sciences, 2011, 108(18): 7296-7301. doi:  10.1073/pnas.1015638108
[549] SOTO J M, RODRIGO J A, ALIEVA T. Label-free quantitative 3D tomographic imaging for partially coherent light microscopy [J]. Optics Express, 2017, 25(14): 15699-15712. doi:  10.1364/OE.25.015699
[550] TIAN L, WALLER L. 3D intensity and phase imaging from light field measurements in an led array microscope [J]. Optica, 2015, 2(2): 104. doi:  10.1364/OPTICA.2.000104
[551] ZHANG R, CAI Z, SUN J, et al. Calculation of coherent field and its application in optical imaging [J]. Laser & Optoelectronics Progress, 2021, 58(18): 1811025. (in Chinese)
[552] WOLF E. New theory of partial coherence in the space–frequency domain. part I: Spectra and cross spectra of steady-state sources [J]. JOSA, 1982, 72(3): 343-351. doi:  10.1364/JOSA.72.000343
[553] WIGNER E. On the quantum correction for thermodynamic equilibrium [J]. Physical Review, 1932, 40(5): 749-759. doi:  10.1103/PhysRev.40.749
[554] DOLIN LS. Beam description of weakly-inhomogeneous wave fields [J]. Izv Vyssh Uchebn Zaved Radiofiz., 1964, 7: 559-563.
[555] WALTHER A. Radiometry and coherence [J]. JOSA, 1968, 58(9): 1256-1259. doi:  10.1364/JOSA.58.001256
[556] WALTHER A. Radiometry and coherence [J]. JOSA, 1973, 63(12): 1622-1623. doi:  10.1364/JOSA.63.001622
[557] BASTIAANS M J. The Wigner distribution function applied to optical signals and systems [J]. Optics Communications, 1978, 25(1): 26-30. doi:  10.1016/0030-4018(78)90080-9
[558] BASTIAANS M J. Wigner distribution function and its application to first-order optics [J]. JOSA, 1979, 69(12): 1710-1716. doi:  10.1364/JOSA.69.001710
[559] BASTIAANS M J. Application of the wigner distribution function to partially coherent light [J]. JOSA A, 1986, 3(8): 1227-1238. doi:  10.1364/JOSAA.3.001227
[560] TESTORF M, HENNELLY B, OJEDA-CASTANEDA J. Phase-SPACE Optics: Fundamentals and Applications[M]. New York: McGraw-Hill Education, 2009.
[561] ZERNIKE F. The concept of degree of coherence and its application to optical problems [J]. Physica, 1938, 5(8): 785-795. doi:  10.1016/S0031-8914(38)80203-2
[562] SANTARSIERO M, BORGHI R. Measuring spatial coherence by using a reversed-wavefront young interferometer [J]. Optics Letters, 2006, 31(7): 861. doi:  10.1364/OL.31.000861
[563] GONZÁLEZ A I, MEJÍA Y. Nonredundant array of apertures to measure the spatial coherence in two dimensions with only one interferogram [J]. JOSA A, 2011, 28(6): 1107-1113. doi:  10.1364/JOSAA.28.001107
[564] NAIK D N, PEDRINI G, TAKEDA M, et al. Spectrally resolved incoherent holography: 3D spatial and spectral imaging using a Mach–Zehnder radial-shearing interferometer [J]. Optics Letters, 2014, 39(7): 1857. doi:  10.1364/OL.39.001857
[565] IACONIS C, WALMSLEY I A. Direct measurement of the two-point field correlation function [J]. Optics Letters, 1996, 21(21): 1783-1785. doi:  10.1364/OL.21.001783
[566] NAIK D N, PEDRINI G, OSTEN W. Recording of incoherent-object hologram as complex spatial coherence function using sagnac radial shearing interferometer and a pockels cell [J]. Optics Express, 2013, 21(4): 3990-3995. doi:  10.1364/OE.21.003990
[567] RAYMER M G, BECK M, MCALISTER D. Complex wave-field reconstruction using phase-space tomography [J]. Physical Review Letters, 1994, 72(8): 1137-1140. doi:  10.1103/PhysRevLett.72.1137
[568] MCALISTER D F, BECK M, CLARKE L, et al. Optical phase retrieval by phase-space tomography and fractional-order fourier transforms [J]. Optics Letters, 1995, 20(10): 1181-1183. doi:  10.1364/OL.20.001181
[569] WALLER L, SITU G, FLEISCHER J W. Phase-space measurement and coherence synthesis of optical beams [J]. Nature Photonics, 2012, 6(7): 474-479. doi:  10.1038/nphoton.2012.144
[570] TIAN L, ZHANG Z, PETRUCCELLI J C, et al. Wigner function measurement using a lenslet array [J]. Optics Express, 2013, 21(9): 10511-10525. doi:  10.1364/OE.21.010511
[571] GLASNER D, BAGON S, IRANI M. Super-resolution from a single image[C/OL]//2009 IEEE 12 th International Conference on Computer Vision. Kyoto: IEEE, 2009: 349–356. [2019–06–05]. http://ieeexplore.ieee.org/document/5459271/.
[572] HUANG J-B, SINGH A, AHUJA N. Single image super-resolution from transformed self-exemplars[C/OL]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA: IEEE, 2015: 5197–5206. [2019–06–05]. http://ieeexplore.ieee.org/document/7299156/.
[573] KWANG IN KIM, YOUNGHEE KWON. Single-image super-resolution using sparse regression and natural image prior [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(6): 1127-1133. doi:  10.1109/TPAMI.2010.25
[574] WANG D, FU T, BI G, et al. Long-distance sub-diffraction high-resolution imaging using sparse sampling [J]. Sensors, 2020, 20(11): 3116. doi:  10.3390/s20113116
[575] XIANG M, PAN A, ZHAO Y, et al. Coherent synthetic aperture imaging for visible remote sensing via reflective fourier ptychography [J]. Optics Letters, 2021, 46(1): 29-32. doi:  10.1364/OL.409258
[576] BIONDI F. Recovery of partially corrupted SAR images by super-resolution based on spectrum extrapolation [J]. IEEE Geoscience and Remote Sensing Letters, 2016, 14(2): 139-143.
[577] BHATTACHARJEE S, SUNDARESHAN M K. Mathematical extrapolation of image spectrum for constraint-set design and set-theoretic superresolution [J]. JOSA A, 2003, 20(8): 1516-1527. doi:  10.1364/JOSAA.20.001516
[578] ELAD M, DATSENKO D. Example-based regularization deployed to super-resolution reconstruction of a single image [J]. The Computer Journal, 2009, 52(1): 15-30.
[579] BEVILACQUA M, ROUMY A, GUILLEMOT C, et al. Single-image super-resolution via linear mapping of interpolated self-examples [J]. IEEE Transactions on Image Processing, 2014, 23(12): 5334-5347. doi:  10.1109/TIP.2014.2364116
[580] DONG C, LOY C C, HE K, et al. Image super-resolution using deep convolutional networks [J]. IEEE Transactions on Pattern Analysis and Machine Iintelligence, 2015, 38(2): 295-307.
[581] ZOU Y, ZHANG L, LIU C, et al. Super-resolution reconstruction of infrared images based on a convolutional neural network with skip connections [J]. Optics and Lasers in Engineering, 2021, 146: 106717. doi:  10.1016/j.optlaseng.2021.106717
[582] WANG B, ZOU Y, ZHANG L, et al. Low-light-level image super-resolution reconstruction based on a multi-scale features extraction network [J]. Photonics, 2021, 8(8): 321.
[583] VANDEWALLE P, SÜSSTRUNK S, VETTERLI M. A frequency domain approach to registration of aliased images with application to super-resolution[J/OL]. EURASIP Journal on Advances in Signal Processing, 2006(1): 71459. [2019–06–05].https://asp-eurasipjournals.springeropen.com/articles/10.1155/ASP/2006/71459.
[584] NGUYEN N, MILANFAR P. A wavelet-based interpolation-restoration method for superresolution (wavelet superresolution) [J]. Circuits Systems and Signal Processing, 2000, 19(4): 321-338. doi:  10.1007/BF01200891
[585] SUNG CHEOL PARK, MIN KYU PARK, MOON GI KANG. Super-resolution image reconstruction: A technical overview [J]. IEEE Signal Processing Magazine, 2003, 20(3): 21-36. doi:  10.1109/MSP.2003.1203207
[586] WANG Z, LIU D, YANG J, et al. Deep networks for image super-resolution with sparse prior[C/OL]//2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile: IEEE, 2015: 370–378. [2019–06–05]. http://ieeexplore.ieee.org/document/7410407/.
[587] IRANI M, PELEG S. Improving resolution by image registration [J]. CVGIP:Graphical Models and Image Processing, 1991, 53(3): 231-239. doi:  10.1016/1049-9652(91)90045-L
[588] CHEN J, LI Y, CAO L. Research on region selection super resolution restoration algorithm based on infrared micro-scanning optical imaging model [J]. Scientific Reports, 2021, 11(1): 1-8. doi:  10.1038/s41598-020-79139-8
[589] ZHANG X, HUANG W, XU M, et al. Super-resolution imaging for infrared micro-scanning optical system [J]. Optics Express, 2019, 27(5): 7719-7737. doi:  10.1364/OE.27.007719
[590] DAI S, LIU J, XIANG H, et al. Super-resolution reconstruction of images based on uncontrollable microscanning and genetic algorithm [J]. Optoelectronics Letters, 2014, 10(4): 313-316. doi:  10.1007/s11801-014-4067-x
[591] HUSZKA G, GIJS M A. Turning a normal microscope into a super-resolution instrument using a scanning microlens array [J]. Scientific Reports, 2018, 8: 601.
[592] GUNTURK B K, ALTUNBASAK Y, MERSEREAU R M. Super-resolution reconstruction of compressed video using transform-domain statistics [J]. IEEE Transactions on Image Processing, 2004, 13(1): 33-43. doi:  10.1109/TIP.2003.819221
[593] CABANSKI W A, BREITER R, MAUK K-H, et al. Miniaturized high-performance starring thermal imaging system[C]//Infrared Detectors and Focal Plane Arrays VI. International Society for Optics and Photonics, 2000: 208–219.
[594] WANG B, ZUO C, SUN J, et al. A computational super-resolution technique based on coded aperture imaging[C/OL]. PETRUCCELLI J C, TIAN L, PREZA C. Computational Imaging V. United States: SPIE, 2020: 25. [2020–10–13].https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11396/2560579/A-computational-super-resolution-technique-based-on-coded-aperture-imaging/10.1117/12.2560579.full.
[595] LUCKE R L, RICKARD L J, BASHKANSKY M, et al. Synthetic aperture ladar (SAL): Fundamental theory, design equations for a satellite system, and laboratory demonstration[R/OL]. Fort Belvoir, VA: Defense Technical Information Center, 2002. [2019–06–05]. http://www.dtic.mil/docs/citations/ADA409859.
[596] BASHKANSKY M, LUCKE R L, FUNK E, et al. Two-dimensional synthetic aperture imaging in the optical domain [J]. Optics Letters, 2002, 27(22): 1983. doi:  10.1364/OL.27.001983
[597] BECK S M, BUCK J R, BUELL W F, et al. Synthetic-aperture imaging laser radar: Laboratory demonstration and signal processing [J]. Applied Optics, 2005, 44(35): 7621. doi:  10.1364/AO.44.007621
[598] GARCÍA J, MICÓ V, GARCÍA-MARTÍNEZ P, et al. Synthetic aperture superresolution by structured light projection[C/OL]//AIP Conference Proceedings. Toledo (Spain): AIP, 2006: 136–145. [2019–06–05]. http://aip.scitation.org/doi/abs/10.1063/1.2361214.
[599] GARCÍA J, ZALEVSKY Z, FIXLER D. Synthetic aperture superresolution by speckle pattern projection [J]. Optics Express, 2005, 13(16): 6073. doi:  10.1364/OPEX.13.006073
[600] HOLLOWAY J, WU Y, SHARMA M K, et al. SAVI: Synthetic apertures for long-range, subdiffraction-limited visible imaging using fourier ptychography [J]. Science Advances, 2017, 3(4): e1602564. doi:  10.1126/sciadv.1602564
[601] KOCH B. Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2010, 65(6): 581-590. doi:  10.1016/j.isprsjprs.2010.09.001
[602] HOLLOWAY J, ASIF M S, SHARMA M K, et al. Toward long distance, sub-diffraction imaging using coherent camera arrays[J/OL]. ArXiv: 1510.08470 [Physics], 2015. [2019–12–18]. http://arxiv.org/abs/1510.08470.
[603] KENDRICK R L, DUNCAN A, OGDEN C, et al. Segmented planar imaging detector for eo reconnaissance[C]//Imaging and Applied Optics, OSA, 2013: CM4 C. 1.
[604] KENDRICK R L, DUNCAN A, OGDEN C, et al. Flat-panel space-based space surveillance sensor[C]//Advanced Maui Optical and Space Surveillance Technologies Conference, 2013.
[605] KATZ B, ROSEN J. Super-resolution in incoherent optical imaging using synthetic aperture with fresnel elements [J]. Optics Express, 2010, 18(2): 962-972. doi:  10.1364/OE.18.000962
[606] ABBE E. Beiträge zur Theorie des mikroskops und der mikroskopischen wahrnehmung [J]. Archiv Für Mikroskopische Anatomie, 1873, 9(1): 413-418.
[607] BETZIG E, PATTERSON G H, SOUGRAT R, et al. Imaging intracellular fluorescent proteins at nanometer resolution [J]. Science, 2006, 313(5793): 1642-1645. doi:  10.1126/science.1127344
[608] RUST M J, BATES M, ZHUANG X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) [J]. Nature Methods, 2006, 3(10): 793. doi:  10.1038/nmeth929
[609] HELL S W, WICHMANN J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11):780-782.
[610] GUSTAFSSON M G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy [J]. Journal of Microscopy, 2000, 198(2): 82-87. doi:  10.1046/j.1365-2818.2000.00710.x
[611] HESS S T, GIRIRAJAN T P, MASON M D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy [J]. Biophysical Journal, 2006, 91(11): 4258-4272. doi:  10.1529/biophysj.106.091116
[612] XIA P, LIU X, WU B, et al. Superresolution imaging reveals structural features of EB1 in microtubule plus-end tracking [J]. Molecular Biology of the Cell, 2014, 25(25): 4166-4173. doi:  10.1091/mbc.e14-06-1133
[613] NICKERSON A, HUANG T, LIN L-J, et al. Photoactivated localization microscopy with bimolecular fluorescence complementation (BiFC-PALM) for nanoscale imaging of protein-protein interactions in cells [J]. PloS One, 2014, 9(6): e100589. doi:  10.1371/journal.pone.0100589
[614] LIU Z, XING D, SU Q P, et al. Super-resolution imaging and tracking of protein–protein interactions in sub-diffraction cellular space [J]. Nature Communications, 2014, 5: 4443. doi:  10.1038/ncomms5443
[615] XU K, ZHONG G, ZHUANG X. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons [J]. Science, 2013, 339(6118): 452-456. doi:  10.1126/science.1232251
[616] KLAR T A, JAKOBS S, DYBA M, et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission [J]. Proceedings of the National Academy of Sciences, 2000, 97(15): 8206-8210. doi:  10.1073/pnas.97.15.8206
[617] WILLIG K I, RIZZOLI S O, WESTPHAL V, et al. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis [J]. Nature, 2006, 440(7086): 935. doi:  10.1038/nature04592
[618] HELL S W. Far-field optical nanoscopy [J]. Science, 2007, 316(5828): 1153-1158. doi:  10.1126/science.1137395
[619] KNER P, CHHUN B B, GRIFFIS E R, et al. Super-resolution video microscopy of live cells by structured illumination [J]. Nature Methods, 2009, 6(5): 339. doi:  10.1038/nmeth.1324
[620] HUANG X, FAN J, LI L, et al. Fast, long-term, super-resolution imaging with hessian structured illumination Microscopy [J]. Nature Biotechnology, 2018, 36(5): 451-459. doi:  10.1038/nbt.4115
[621] EGGELING C, WILLIG K I, SAHL S J, et al. Lens-based fluorescence nanoscopy [J]. Quarterly Reviews of Biophysics, 2015, 48(2): 178-243. doi:  10.1017/S0033583514000146
[622] GUSTAFSSON M G. Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution [J]. Proceedings of the National Academy of Sciences, 2005, 102(37): 13081-13086. doi:  10.1073/pnas.0406877102
[623] WILDANGER D, MEDDA R, KASTRUP L, et al. A compact STED microscope providing 3D nanoscale resolution [J]. Journal of Microscopy, 2009, 236(1): 35-43. doi:  10.1111/j.1365-2818.2009.03188.x
[624] SCHMIDT R, WURM C A, JAKOBS S, et al. Spherical nanosized focal spot unravels the interior of cells [J]. Nature Methods, 2008, 5(6): 539. doi:  10.1038/nmeth.1214
[625] BERNING S, WILLIG K I, STEFFENS H, et al. Nanoscopy in a living mouse brain [J]. Science, 2012, 335(6068): 551-551. doi:  10.1126/science.1215369
[626] SCHERMELLEH L, CARLTON P M, HAASE S, et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy[J/OL]. Science, 2008, 320(5881): 1332–1336. [2019–06–05]. http://www.sciencemag.org/cgi/doi/10.1126/science.1156947.
[627] ZHIJIAN L, JINGZE L, YAQIONG W, et al. Principle and recent progress of several super-resolution fluorescence microscopy techniques [J]. Progress in Biochemistry and Biophysics, 2009, 36(12): 1626-1634.
[628] HUANG B, WANG W, BATES M, et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy [J]. Science, 2008, 319(5864): 810-813. doi:  10.1126/science.1153529
[629] PRAKASH K, DIEDERICH B, HEINTZMANN R, et al. Super-resolution microscopy: a brief history and new avenues [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 380(2220): 20210110. doi:  10.1098/rsta.2021.0110
[630] CHMYROV A, KELLER J, GROTJOHANN T, et al. Nanoscopy with more than 100, 000’doughnuts’ [J]. Nature Methods, 2013, 10(8): 737. doi:  10.1038/nmeth.2556
[631] SHARONOV A, HOCHSTRASSER R M. Wide-field subdiffraction imaging by accumulated binding of diffusing probes [J]. Proceedings of the National Academy of Sciences, 2006, 103(50): 18911-18916. doi:  10.1073/pnas.0609643104
[632] BALZAROTTI F, EILERS Y, GWOSCH K C, et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes [J]. Science, 2017, 355(6325): 606-612. doi:  10.1126/science.aak9913
[633] DERTINGER T, COLYER R, IYER G, et al. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI) [J]. Proceedings of the National Academy of Sciences, 2009, 106(52): 22287-22292. doi:  10.1073/pnas.0907866106
[634] WANG Z, GUO W, LI L, et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope [J]. Nature Communications, 2011, 2: 218. doi:  10.1038/ncomms1211
[635] SIGAL Y M, ZHOU R, ZHUANG X. Visualizing and discovering cellular structures with super-resolution microscopy [J]. Science, 2018, 361(6405): 880-887. doi:  10.1126/science.aau1044
[636] XIANG H, QING Y, CUIFANG K, et al. Optical super-resolution imaging based on frequency shift [J]. Acta Optica Sinica, 2021, 41(1): 0111001. (in Chinese) doi:  10.3788/AOS202141.0111001
[637] ZHANGHAO K, CHEN X, LIU W, et al. Super-resolution imaging of fluorescent dipoles via polarized structured illumination microscopy [J]. Nature Communications, 2019, 10(1): 4694. doi:  10.1038/s41467-019-12681-w
[638] LIANG L, YAN W, QIN X, et al. Designing sub‐2 nm organosilica nanohybrids for far‐field super‐resolution imaging[J]. Angewandte Chemie, 2020, 132(2): 756-761.
[639] Zhao W, Zhao S, Li L. et al. Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy[J/OL]. Nature Biotechnology (2021).https://doi.org/10.1038/s41587-021-01092-2.
[640] DAN D, LEI M, YAO B, et al. DMD-based LED-illumination super-resolution and optical sectioning microscopy [J]. Scientific Reports, 2013, 3(1): 1116. doi:  10.1038/srep01116
[641] HELL S W, SAHL S J, BATES M, et al. The 2015 super-resolution microscopy roadmap[J]. Journal of Physics D: Applied Physics, 2015, 48(44): 443001.
[642] CLEGG B. The Man Who Stopped Time: The Illuminating Story Of Eadweard Muybridge–pioneer Photographer, Father of the Motion Picture, Murderer[M]. Washington, DC: Joseph Henry Press, 2007, 7: 1, 106-108.
[643] FURUTA M, NISHIKAWA Y, INOUE T, et al. A high-speed, high-sensitivity digital CMOS image sensor with a global shutter and 12-bit column-parallel cyclic A/D converters [J]. IEEE Journal of Solid-State Circuits, 2007, 42(4): 766-774. doi:  10.1109/JSSC.2007.891655
[644] WANG X, YAN L, SI J, et al. High-frame-rate observation of single femtosecond laser pulse propagation in fused silica using an echelon and optical polarigraphy technique [J]. Applied Optics, 2014, 53(36): 8395-8399. doi:  10.1364/AO.53.008395
[645] KAKUE T, TOSA K, YUASA J, et al. Digital light-in-flight recording by holography by use of a femtosecond pulsed laser [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 18(1): 479-485.
[646] LI Z, ZGADZAJ R, WANG X, et al. Single-shot tomographic movies of evolving light-velocity objects [J]. Nature Communications, 2014, 5(1): 1-12.
[647] NAKAGAWA K, IWASAKI A, OISHI Y, et al. Sequentially timed all-optical mapping photography (STAMP) [J]. Nature Photonics, 2014, 8(9): 695-700. doi:  10.1038/nphoton.2014.163
[648] YUE Q-Y, CHENG Z-J, HAN L, et al. One-shot time-resolved holographic polarization microscopy for imaging laser-induced ultrafast phenomena [J]. Optics Express, 2017, 25(13): 14182-14191. doi:  10.1364/OE.25.014182
[649] EHN A, BOOD J, LI Z, et al. FRAME: Femtosecond videography for atomic and molecular dynamics[J]. Light: Science & Applications, 2017, 6(9): e17045–e17045.
[650] FERMANN M E, GALVANAUSKAS A, SUCHA G. Ultrafast Lasers: Technology and Applications[M]. Boca Raton: CRC Press, 2002.
[651] WEINER A M. Ultrafast optical pulse shaping: A tutorial review [J]. Optics Communications, 2011, 284(15): 3669-3692. doi:  10.1016/j.optcom.2011.03.084
[652] VELTEN A, WU D, JARABO A, et al. Femto-photography: Capturing and visualizing the propagation of light [J]. ACM Transactions on Graphics (ToG), 2013, 32(4): 1-8.
[653] GAO L, LIANG J, LI C, et al. Single-shot compressed ultrafast photography at one hundred billion frames per second [J]. Nature, 2014, 516(7529): 74-77. doi:  10.1038/nature14005
[654] LIANG J, ZHU L, WANG L V. Single-shot real-time femtosecond imaging of temporal focusing[J]. Light: Science & Applications, 2018, 7(1): 1–10.
[655] QI D, CAO F, XU S, et al. 100-trillion-frame-per-second single-shot compressed ultrafast photography via molecular alignment [J]. Physical Review Applied, 2021, 15(2): 024051. doi:  10.1103/PhysRevApplied.15.024051
[656] LEI S, ZHANG S. Flexible 3-D shape measurement using projector defocusing [J]. Optics Letters, 2009, 34(20): 3080-3082. doi:  10.1364/OL.34.003080
[657] AYUBI G A, AYUBI J A, DI MARTINO J M, et al. Pulse-width modulation in defocused three-dimensional fringe projection [J]. Optics Letters, 2010, 35(21): 3682-3684. doi:  10.1364/OL.35.003682
[658] ZUO C, CHEN Q, FENG S, et al. Optimized pulse width modulation pattern strategy for three-dimensional profilometry with projector defocusing [J]. Applied Optics, 2012, 51(19): 4477-4490. doi:  10.1364/AO.51.004477
[659] ZUO C, CHEN Q, GU G, et al. High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection [J]. Optics and Lasers in Engineering, 2013, 51(8): 953-960. doi:  10.1016/j.optlaseng.2013.02.012
[660] WANG Y, ZHANG S. Superfast multifrequency phase-shifting technique with optimal pulse width modulation [J]. Optics Express, 2011, 19(6): 5149-5155. doi:  10.1364/OE.19.005149
[661] WANG Y, ZHANG S. Three-dimensional shape measurement with binary dithered patterns [J]. Applied Optics, 2012, 51(27): 6631-6636. doi:  10.1364/AO.51.006631
[662] DAI J, ZHANG S. Phase-optimized dithering technique for high-quality 3D shape measurement [J]. Optics and Lasers in Engineering, 2013, 51(6): 790-795. doi:  10.1016/j.optlaseng.2013.02.003
[663] DAI J, LI B, ZHANG S. High-quality fringe pattern generation using binary pattern optimization through symmetry and periodicity [J]. Optics and Lasers in Engineering, 2014, 52: 195-200. doi:  10.1016/j.optlaseng.2013.06.010
[664] SUN J, ZUO C, FENG S, et al. Improved intensity-optimized dithering technique for 3D shape measurement [J]. Optics and Lasers in Engineering, 2015, 66: 158-164. doi:  10.1016/j.optlaseng.2014.09.008
[665] DAI J, LI B, ZHANG S. Intensity-optimized dithering technique for three-dimensional shape measurement with projector defocusing [J]. Optics and Lasers in Engineering, 2014, 53: 79-85. doi:  10.1016/j.optlaseng.2013.08.015
[666] LI B, WANG Y, DAI J, et al. Some recent advances on superfast 3D shape measurement with digital binary defocusing techniques [J]. Optics and Lasers in Engineering, 2014, 54: 236-246. doi:  10.1016/j.optlaseng.2013.07.010
[667] ZHANG S, VAN D W D, OLIVER J. Superfast phase-shifting method for 3-D shape measurement. [J]. Optics Express, 2010, 18(9): 9684. doi:  10.1364/OE.18.009684
[668] GONG Y, ZHANG S. Ultrafast 3-D shape measurement with an off-the-shelf DLP projector [J]. Optics Express, 2010, 18(19): 19743-19754. doi:  10.1364/OE.18.019743
[669] ZUO C, TAO T, FENG S, et al. Micro Fourier transform profilometry (μFTP): 3D shape measurement at 10, 000frames per second [J]. Optics and Lasers in Engineering, 2018, 102: 70-91. doi:  10.1016/j.optlaseng.2017.10.013
[670] YIN W, ZUO C, FENG S, et al. High-speed three-dimensional shape measurement using geometry-constraint-based number-theoretical phase unwrapping [J]. Optics and Lasers in Engineering, 2019, 115: 21-31. doi:  10.1016/j.optlaseng.2018.11.006
[671] LAUGHNER J I, ZHANG S, LI H, et al. Mapping cardiac surface mechanics with structured light imaging [J]. American Journal of Physiology-Heart and Circulatory Physiology, 2012, 303(6): H712-H720. doi:  10.1152/ajpheart.00269.2012
[672] ZHANG Q, SU X, CAO Y, et al. Optical 3-D shape and deformation measurement of rotating blades using stroboscopic structured illumination [J]. Optical Engineering, 2005, 44(11): 113601. doi:  10.1117/1.2127927
[673] SCHAFFER M, GRO\S SE M, HARENDT B, et al. High-speed optical 3-D measurements for shape representation [J]. Optics and Photonics News, 2011, 22(12): 49-49. doi:  10.1364/OPN.22.12.000049
[674] SCHAFFER M, GROSSE M, HARENDT B, et al. High-speed three-dimensional shape measurements of objects with laser speckles and acousto-optical deflection [J]. Optics Letters, 2011, 36(16): 3097-3099. doi:  10.1364/OL.36.003097
[675] SCHAFFER M, GRO\S SE M, HARENDT B, et al. Statistical patterns: an approach for high-speed and high-accuracy shape measurements [J]. Optical Engineering, 2014, 53(11): 112205.
[676] GROSSE M, SCHAFFER M, HARENDT B, et al. Fast data acquisition for three-dimensional shape measurement using fixed-pattern projection and temporal coding [J]. Optical Engineering, 2011, 50(10): 100503. doi:  10.1117/1.3646100
[677] FUJIGAKI M, SAKAGUCHI T, MURATA Y. Development of a compact 3D shape measurement unit using the light-source-stepping method [J]. Optics and Lasers in Engineering, 2016, 85: 9-17. doi:  10.1016/j.optlaseng.2016.04.016
[678] HEIST S, MANN A, KÜHMSTEDT P, et al. Array projection of aperiodic sinusoidal fringes for high-speed three-dimensional shape measurement [J]. Optical Engineering, 2014, 53(11): 112208. doi:  10.1117/1.OE.53.11.112208
[679] HEIST S, LUTZKE P, SCHMIDT I, et al. High-speed three-dimensional shape measurement using GOBO projection [J]. Optics and Lasers in Engineering, 2016, 87: 90-96. doi:  10.1016/j.optlaseng.2016.02.017
[680] HEIST S. 5D hyperspectral imaging: Fast and accurate measurement of surface shape and spectral characteristics using structured light [J]. Optics Express, 2018, 26(18): 23366-23379. doi:  10.1364/OE.26.023366
[681] LANDMANN M, HEIST S, DIETRICH P, et al. High-speed 3D thermography [J]. Optics and Lasers in Engineering, 2019, 121: 448-455. doi:  10.1016/j.optlaseng.2019.05.009
[682] FENG S, ZUO C, YIN W, et al. Micro deep learning profilometry for high-speed 3D surface imaging [J]. Optics and Lasers in Engineering, 2019, 121: 416-427. doi:  10.1016/j.optlaseng.2019.04.020
[683] YOU L, YANG X, HE Y, et al. Jitter analysis of a superconducting nanowire single photon detector [J]. Aip Advances, 2013, 3(7): 072135. doi:  10.1063/1.4817581
[684] RAGHURAM A, PEDIREDLA A, NARASIMHAN S G, et al. STORM: Super-resolving transients by oveRsampled measurements[C/OL]//2019 IEEE International Conference on Computational Photography (ICCP). Tokyo, Japan: IEEE, 2019: 1–11. [2022–01–27]. https://ieeexplore.ieee.org/document/8747334/.
[685] WANG Z, MIKI S, FUJIWARA M. Superconducting nanowire single-photon detectors for quantum information and communications [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(6): 1741-1747. doi:  10.1109/JSTQE.2009.2034616
[686] LINGDONG K, QINGYUAN Z, XUECOU T, et al. Progress and applications of superconducting nanowire delay-line single-photon imagers [J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011002. (in Chinese) doi:  10.3788/LOP202158.1011002
[687] BEITONG C, QIAN D, XIUMIN X, et al. The progress of single-photon photodetectors[J/OL]. Laser Technology. [2022-02-18]. http://kns.cnki.net/kcms/detail/51.1125.TN.20210927.2354.004.html.
[688] Tobin R, Halimi A, Mccarthy A, et al. Long-range depth profiling of camouflaged targets using single-photon detection [J]. Optical Engineering, 2017, 57(3): 031303. doi:  10.1117/1.OE.57.3.031303
[689] LI Z-P, YE J-T, HUANG X, et al. Single-photon imaging over 200 km [J]. Optica, 2021, 8(3): 344. doi:  10.1364/OPTICA.408657
[690] CHEN S, HALIMI A, REN X, et al. Learning non-local spatial correlations to restore sparse 3D single-photon data [J]. IEEE Transactions on Image Processing, 2019, 29: 3119-3131.
[691] HUA K, LIU B, CHEN Z, et al. Efficient and noise robust photon-counting imaging with first signal photon unit method[J]. Photonics, 2021, 8(6): 229.
[692] LI Z-P, HUANG X, JIANG P-Y, et al. Super-resolution single-photon imaging at 8.2 kilometers [J]. Optics Express, 2020, 28(3): 4076-4087. doi:  10.1364/OE.383456
[693] XUE R, KANG Y, ZHANG T, et al. Sub-pixel scanning high-resolution panoramic 3D imaging based on a SPAD array [J]. IEEE Photonics Journal, 2021, 13(4): 1-6. doi:  10.1109/JPHOT.2021.3103817
[694] MACCARONE A, MATTIOLI DELLA ROCCA F, MCCARTHY A, et al. Three-dimensional imaging of stationary and moving targets in turbid underwater environments using a single-photon detector array [J]. Optics Express, 2019, 27(20): 28437. doi:  10.1364/OE.27.028437
[695] LIU Y X, FAN Q, LI X Y, et al. Realization of silicon single-photon detector with ultra-low dark count rate [J]. Acta Optica Sinica, 2020, 40(10): 1004001. (in Chinese)
[696] LI Z P. Long range single-photon three-dimensional imaging[D/OL]. Heifei: University of Science and Technology of China, 2020.https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CDFD&dbname=CDFDLAST2021&filename=1020088480.nh&v=.
[697] MARINO R, STEPHENS T, HATCH R, et al. A compact 3D imaging laser radar system using Geiger-mode APD arrays: System and measurements[C]//Proceedings of SPIE, 2003, 5086: 501581.
[698] AULL B. Geiger-mode avalanche photodiode arrays integrated to all-digital CMOS circuits [J]. Sensors, 2016, 16: 495. doi:  10.3390/s16040495
[699] MARINO R, DAVIS W. Jigsaw : A foliage-penetrating 3D imaging laser radar system[J/OL]. Undefined, 2004.[2022–02–13].https://www.semanticscholar.org/paper/Jigsaw-%3 A-A-Foliage-Penetrating-3-D-Imaging-Laser-Marino-Davis/dd5821 a64 eb27 b04259 c0 fb4 da93 f3 b7601 f70 b1.
[700] BULLER G S, WALLACE A M. Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(4): 1006-1015. doi:  10.1109/JSTQE.2007.902850
[701] MCCARTHY A, KRICHEL N J, GEMMELL N R, et al. Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection [J]. Optics Express, 2013, 21(7): 8904-8915. doi:  10.1364/OE.21.008904
[702] KIRMANI A, VENKATRAMAN D, SHIN D, et al. First-photon imaging [J]. Science, 2014, 343(6166): 58-61. doi:  10.1126/science.1246775
[703] ALTMANN Y, REN X, MCCARTHY A, et al. Lidar waveform-based analysis of depth images constructed using sparse single-photon data [J]. IEEE Transactions on Image Processing, 2016, 25(5): 1935-1946. doi:  10.1109/TIP.2016.2526784
[704] LI Z-P, HUANG X, CAO Y, et al. Single-photon computational 3D imaging at 45 km [J]. Photonics Research, 2020, 8(9): 1532-1540. doi:  10.1364/PRJ.390091
[705] CHEN C, CHEN Q, XU J, et al. Learning to see in the dark [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2008: 3291-3300.
[706] LINDELL D B, O’TOOLE M, WETZSTEIN G. Single-photon 3D imaging with deep sensor fusion [J]. ACM Transactions on Graphics, 2018, 37(4): 1-12. doi:  https://doi.org/10.1145/3197517.3201316
[707] PENG J, XIONG Z, HUANG X, et al. Photon-efficient 3D imaging with a non-local neural network[C]//European Conference on Computer Vision, ECCV, 2020: 225-241.
[708] TAN H, PENG J, XIONG Z, et al. Deep learning based single-photon 3D imaging with multiple returns [C]//2020 International Conference on 3D Vision (3DV), 2020: 1196-1205.
[709] ZHAO X, JIANG X, HAN A, et al. Photon-efficient 3D reconstruction employing a edge enhancement method [J]. Optics Express, 2022, 30(2): 1555-1569. doi:  10.1364/OE.446369
[710] ARGUS-IS. ARGUS-IS[Z/OL].(2020–07–15)[2021–03–08]. https://en.wikipedia.org/w/index.php?title=ARGUS-IS&oldid=967762056.
[711] WILBURN B, JOSHI N, VAISH V, et al. High-speed videography using a dense camera array[C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR, 2004.
[712] WILBURN B, JOSHI N, VAISH V, et al. High performance imaging using large camera arrays [J]. ACM Transactions on Graphics, 2005, 24(3): 765-776. doi:  https://doi.org/10.1145/1073204.1073259
[713] Perrin S. A 360 Degree camera that sees in 3D (w/ Video)[EB/OL]. 2010, [2021–03–08]. https://phys.org/news/2010-12-degree-camera-3d-video.html.
[714] COGAL O, AKIN A, SEYID K, et al. A new omni-directional multi-camera system for high resolution surveillance[C]//Mobile Multimedia/Image Processing, Security, and Applications 2014. International Society for Optics and Photonics, 2014, 9120: 91200N.
[715] LAW N M, FORS O, RATZLOFF J, et al. The evryscope: Design and performance of the first full-sky gigapixel-scale telescope[C]//Ground-Based And Airborne Telescopes VI. International Society for Optics and Photonics, 2016, 9906: 99061M.
[716] LAW N M, FORS O, RATZLOFF J, et al. Evryscope science: Exploring the potential of all-sky gigapixel-scale telescopes [J]. Publications of the Astronomical Society of the Pacific, 2015, 127(949): 234. doi:  10.1086/680521
[717] LIFANG S. Research and experiments on artificial compound eye imaging system with large field of view [D]. Chengdu: University of Electronic Science and Technology of China, 2014. (in Chinese)
[718] SHI LIFANG, CAO AXIU C, LIU YUELIAN, et al. Design and experiment of artificial compound eye with large view field [J]. Opto-Electronic Engineering, 2013, 40: 27-33. (in Chinese)
[719] HONGXIN Z, ZHENWU L, FENGYOU L. The Research progress of artificial compound eye [J]. Journal of Changchun University of Science and Technology, 2006(2): 4-7.
[720] ZHANG HONGXIN, LU ZHENWU, LIU HUA. Novel method to simulate and analyze superposition compound eyes [J]. Optics and Precision Engineering, 2008, 16(10): 1847. (in Chinese)
[721] HONGXIN Z, ZHENWU L, FENGYOU L, et al. The building and analysis of the superposition compound eye’s optical model [J]. Acta Photonica Sinica, 2007, 36(6): 1106. (in Chinese)
[722] HONGXIN Z, ZHENWU L, FENGYOU L, et al. Simulation and analysis of the apposition compound eye based on the ZEMAX software [J]. Optical Technique, 2006, 32(S1): 124-126+129.
[723] CAO ZhAOLOU, ZHAN ZHENXIAN, WANG KEYI. Structural design of spherical compound eye lens for moving object detection [J]. Infrared and Laser Engineering, 2011, 40(1): 70-73. (in Chinese)
[724] Fang G. Design on novel compound eye device for target positioning and research on the key technology[D]. Hefei: University of Science and Technology of China, 2012. (in Chinese)
[725] GUO FANG, WANG KEYI, YAN PEIZHENG, et al. Calibration of compound eye system for target positioning with large field of view [J]. Optics and Precision Engineering, 2012, 20(5): 913-920. (in Chinese)
[726] KEIYI W, HAO Z, ZHAOLOU C, et al. Calibration and detection of compound eye model [J]. Optics and Precision Engineering, 2010, 18(8): 1807-1813. (in Chinese)
[727] Aqueti. Aqueti(中国)- 官方网站[EB/OL]. [2021–03–07]. http://www.aqueti.cn/.
[728] BRADY D J, HAGEN N. Multiscale lens design [J]. Optics Express, 2009, 17(13): 10659-10674. doi:  10.1364/OE.17.010659
[729] TREMBLAY E J, MARKS D L, BRADY D J, et al. Design and scaling of monocentric multiscale imagers [J]. Applied Optics, 2012, 51(20): 4691-4702. doi:  10.1364/AO.51.004691
[730] MARKS D L, BRADY D J. Close-up imaging using microcamera arrays for focal plane synthesis [J]. Optical Engineering, 2011, 50(3): 033205. doi:  10.1117/1.3554389
[731] MARKS D L, TREMBLAY E J, FORD J E, et al. Microcamera aperture scale in monocentric gigapixel cameras [J]. Applied Optics, 2011, 50(30): 5824-5833. doi:  10.1364/AO.50.005824
[732] MARKS D L, BRADY D J. Gigagon: A monocentric lens design imaging 40 gigapixels[C]//Imaging Systems. Optical Society of America, 2010: ITuC2.
[733] SON H S, MARKS D L, HAHN J, et al. Design of a spherical focal surface using close-packed relay optics [J]. Optics Express, 2011, 19(17): 16132-16138. doi:  10.1364/OE.19.016132
[734] SON H S, MARKS D L, TREMBLAY E, et al. A multiscale, wide field, gigapixel camera[C]//Computational Optical Sensing And Imaging. Optical Society of America, 2011: JTuE2.
[735] BRADY D J, GEHM M E, STACK R A, et al. Multiscale gigapixel photography [J]. Nature, 2012, 486(7403): 386-389. doi:  10.1038/nature11150
[736] MARKS D L, LLULL P R, PHILLIPS Z, et al. Characterization of the AWARE 10 two-gigapixel wide-field-of-view visible imager [J]. Applied Optics, 2014, 53(13): C54-C63. doi:  10.1364/AO.53.000C54
[737] LLULL P, BANGE L, PHILLIPS Z, et al. Characterization of the AWARE 40 wide-field-of-view visible imager [J]. Optica, 2015, 2(12): 1086-1089. doi:  10.1364/OPTICA.2.001086
[738] WU J, XIONG B, LIN X, et al. Snapshot hyperspectral volumetric microscopy [J]. Scientific Reports, 2016, 6(1): 1-10. doi:  10.1038/s41598-016-0001-8
[739] JUNKAI Q, FENG Z, GANG Y, et al. A new super-large of view and small distortion optical system [J]. Spacecraft Recovery & Remote Sensing, 2013, 34(2): 30-35.
[740] AQI Y. Optical design of three-line array airborne mapping camera[D]. Xi'an: University of Chinese Academy of Sciences (Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences), 2015. (in Chinese)
[741] YISI W. Research on wide FOV high resolution earth observation system based on multi-scale stitching imaging[D]. Hangzhou: Zhejiang University, 2016. (in Chinese)
[742] XIAOPENG S, FEI L, WEI L, et al. Latest progress in comptutational imaging technology and application [J]. Laser & Optoelectronics Progress, 2020, 57(2): 020001. (in Chinese)
[743] FEI L, YAZHEN W, PINGLI H, et al. Design of multi-scale wide area high-resolution computational imaging system based on concentric spherical lens [J]. Acta Physica Sinica, 2019, 68(8): 084201. (in Chinese) doi:  10.7498/aps.68.20182229
[744] GARCIA-SUCERQUIA J, XU W, JERICHO S K, et al. Digital in-line holographic microscopy [J]. Applied Optics, 2006, 45(5): 836-850. doi:  10.1364/AO.45.000836
[745] GARCIA-SUCERQUIA J, XU W, JERICHO M H, et al. Immersion digital in-line holographic microscopy [J]. Optics Letters, 2006, 31(9): 1211-1213. doi:  10.1364/OL.31.001211
[746] KANKA M, RIESENBERG R, KREUZER H J. Reconstruction of high-resolution holographic microscopic images [J]. Optics Letters, 2009, 34(8): 1162-1164. doi:  10.1364/OL.34.001162
[747] KANKA M, RIESENBERG R, PETRUCK P, et al. High resolution (NA=0.8) in lensless in-line holographic microscopy with glass sample carriers [J]. Optics Letters, 2011, 36(18): 3651-3653. doi:  10.1364/OL.36.003651
[748] BISHARA W, SU T-W, COSKUN A F, et al. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution [J]. Optics Express, 2010, 18(11): 11181-11191. doi:  10.1364/OE.18.011181
[749] HAHN J, LIM S, CHOI K, et al. Video-rate compressive holographic microscopic tomography [J]. Optics Express, 2011, 19(8): 7289-7298. doi:  10.1364/OE.19.007289
[750] LUO W, ZHANG Y, GÖRÖCS Z, et al. Propagation phasor approach for holographic image reconstruction [J]. Scientific Reports, 2016, 6: 22738. doi:  10.1038/srep22738
[751] XIONG Z, MELZER J E, GARAN J, et al. Optimized sensing of sparse and small targets using lens-free holographic microscopy [J]. Optics Express, 2018, 26(20): 25676. doi:  10.1364/OE.26.025676
[752] AGBANA T E, GONG H, AMOAH A S, et al. Aliasing, coherence, and resolution in a lensless holographic microscope [J]. Optics Letters, 2017, 42(12): 2271-2274. doi:  10.1364/OL.42.002271
[753] ZHANG W, CAO L, JIN G, et al. Full field-of-view digital lens-free holography for weak-scattering objects based on grating modulation [J]. Applied Optics, 2018, 57(1): A164. doi:  10.1364/AO.57.00A164
[754] ALLIER C, MOREL S, VINCENT R, et al. Imaging of dense cell cultures by multiwavelength lens-free video microscopy: Cell cultures by lens-free microscopy [J]. Cytometry Part A, 2017, 91(5): 433-442. doi:  10.1002/cyto.a.23079
[755] SERABYN E, LIEWER K, WALLACE J K. Resolution optimization of an off-axis lensless digital holographic microscope [J]. Applied Optics, 2018, 57(1): A172. doi:  10.1364/AO.57.00A172
[756] FENG S, WU J. Resolution enhancement method for lensless in-line holographic microscope with spatially-extended light source [J]. Optics Express, 2017, 25(20): 24735. doi:  10.1364/OE.25.024735
[757] FENG S, WANG M, WU J. Lensless in-line holographic microscope with talbot grating illumination [J]. Optics Letters, 2016, 41(14): 3157. doi:  10.1364/OL.41.003157
[758] CUI X, LEE L M, HENG X, et al. Lensless high-resolution on-chip optofluidic microscopes for caenorhabditis elegans and cell imaging [J]. Proceedings of The National Academy of Sciences, 2008, 105(31): 10670-10675. doi:  10.1073/pnas.0804612105
[759] XU W, JERICHO M H, MEINERTZHAGEN I A, et al. Digital in-line holography for biological applications [J]. Proceedings of the National Academy of Sciences, 2001, 98(20): 11301-11305. doi:  10.1073/pnas.191361398
[760] SU T, SEO S, ERLINGER A, et al. Towards wireless health: Lensless on-chip cytometry [J]. Optics and Photonics News, 2008, 19(12): 24-24. doi:  10.1364/OPN.19.12.000024
[761] ISIKMAN S, SEO S, SENCAN I, et al. Lensfree cell holography on a chip: From holographic cell signatures to microscopic reconstruction[C]//2009 IEEE LEOS Annual Meeting Conference Proceedings, 2009.
[762] ZHENG G, LEE S A, ANTEBI Y, et al. The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM) [J]. Proceedings of the National Academy of Sciences, 2011, 108(41): 16889-16894. doi:  10.1073/pnas.1110681108
[763] GREENBAUM A, LUO W, SU T-W, et al. Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy [J]. Nature Methods, 2012, 9(9): 889-895. doi:  10.1038/nmeth.2114
[764] GREENBAUM A, OZCAN A. Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy [J]. Optics Express, 2012, 20(3): 3129-3143. doi:  10.1364/OE.20.003129
[765] BISHARA W, SIKORA U, MUDANYALI O, et al. Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array [J]. Lab on A Chip, 2011, 11(7): 1276-1279. doi:  10.1039/C0LC00684J
[766] HARDIE R C, BARNARD K J, BOGNAR J G, et al. High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system [J]. Optical Engineering, 1998, 37(1): 247-261. doi:  10.1117/1.601623
[767] ELAD M, HEL-OR Y. A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur [J]. IEEE Transactions on Image Processing, 2001, 10(8): 1187-1193. doi:  10.1109/83.935034
[768] GREENBAUM A, FEIZI A, AKBARI N, et al. Wide-field computational color imaging using pixel super-resolved on-chip microscopy [J]. Optics Express, 2013, 21(10): 12469-12483. doi:  10.1364/OE.21.012469
[769] GREENBAUM A, SIKORA U, OZCAN A. Field-portable wide-field microscopy of dense samples using multi-height pixel super-resolution based lensfree imaging [J]. Lab on A Chip, 2012, 12(7): 1242-1245. doi:  10.1039/C2LC21072J
[770] ZHENG G, AH LEE S, YANG S, et al. Sub-pixel resolving optofluidic microscope for on-chip cell imaging [J]. Lab on A Chip, 2010, 10(22): 3125-3129. doi:  10.1039/C0LC00213E
[771] LUO W, GREENBAUM A, ZHANG Y, et al. Synthetic aperture-based on-chip microscopy [J]. Light:Science & Applications, 2015, 4(3): e261. doi:  10.1038/lsa.2015.34
[772] BAO P, ZHANG F, PEDRINI G, et al. Phase retrieval using multiple illumination wavelengths [J]. Optics Letters, 2008, 33(4): 309-311. doi:  10.1364/OL.33.000309
[773] BAO P, SITU G, PEDRINI G, et al. Lensless phase microscopy using phase retrieval with multiple illumination wavelengths [J]. Applied Optics, 2012, 51(22): 5486-5494. doi:  10.1364/AO.51.005486
[774] NOOM D W E, FLAES D E B, LABORDUS E, et al. High-speed multi-wavelengt Fresnel diffraction imaging [J]. Optics Express, 2014, 22(25): 30504-30511. doi:  10.1364/OE.22.030504
[775] SANZ M, PICAZO-BUENO J A, GARCÍA J, et al. Improved quantitative phase imaging in lensless microscopy by single-shot multi-wavelength illumination using a fast convergence algorithm [J]. Optics Express, 2015, 23(16): 21352-21365. doi:  10.1364/OE.23.021352
[776] FIENUP J R. Reconstruction of an object from the modulus of Its fourier transform [J]. Optics Letters, 1978, 3(1): 27-29. doi:  10.1364/OL.3.000027
[777] LUO W, ZHANG Y, FEIZI A, et al. Pixel super-resolution using wavelength scanning [J]. Light: Science & Applications, 2016, 5(4): e16060. doi:  10.1038/lsa.2016.60
[778] ZHANG J, SUN J, CHEN Q, et al. Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy [J]. Scientific Reports, 2017, 7(1): 11777. doi:  10.1038/s41598-017-11715-x
[779] RIVENSON Y, ZHANG Y, GÜNAYDIN H, et al. Phase recovery and holographic image reconstruction using deep learning in neural networks [J]. Light: Science & Applications, 2018, 7(2): 17141. doi:  10.1038/lsa.2017.141
[780] RIVENSON Y, CEYLAN KOYDEMIR H, WANG H, et al. Deep learning enhanced mobile-phone microscopy [J]. ACS Photonics, 2018, 5: 2354-2364. doi:  10.1021/acsphotonics.8b00146
[781] JIALIN Z, QIAN C, XIANGYU Z, et al. Lens-free on-chip microscopy: Theory, advances, and applications [J]. Infrared and Laser Engineering, 2019, 48(6): 0603009. (in Chinese) doi:  10.3788/IRLA201948.0603009
[782] MICO V, ZALEVSKY Z, GARCÍA-MARTÍNEZ P, et al. Synthetic aperture superresolution with multiple off-axis holograms [J]. JOSA A, 2006, 23(12): 3162-3170. doi:  10.1364/JOSAA.23.003162
[783] MICO V, ZALEVSKY Z, GARCÍA-MARTÍNEZ P, et al. Superresolved imaging in digital holography by superposition of tilted wavefronts [J]. Applied Optics, 2006, 45(5): 822-828. doi:  10.1364/AO.45.000822
[784] GRANERO L, MICÓ V, ZALEVSKY Z, et al. Superresolution imaging method using phase-shifting digital lensless fourier holography [J]. Optics Express, 2009, 17(17): 15008-15022. doi:  10.1364/OE.17.015008
[785] MICÓ V, FERREIRA C, GARCÍA J. Surpassing digital holography limits by lensless object scanning holography [J]. Optics Express, 2012, 20(9): 9382-9395. doi:  10.1364/OE.20.009382
[786] MICO V, ZALEVSKY Z, GARCÍA J. Common-path phase-shifting digital holographic microscopy: A way to quantitative phase imaging and superresolution [J]. Optics Communications, 2008, 281(17): 4273-4281. doi:  10.1016/j.optcom.2008.04.079
[787] MICÓ V, GARCÍA J. Common-path phase-shifting lensless holographic microscopy [J]. Optics Letters, 2010, 35(23): 3919-3921. doi:  10.1364/OL.35.003919
[788] MICÓ V, ZALEVSKY Z, GARCIA J. Superresolved common-path phase-shifting digital inline holographic microscopy using a spatial light modulator [J]. Optics Letters, 2012, 37(23): 4988-4990. doi:  10.1364/OL.37.004988
[789] MICÓ V, ZALEVSKY Z. Superresolved digital in-line holographic microscopy for high-resolution lensless biological imaging [J]. Journal of Biomedical Optics, 2010, 15(4): 046027. doi:  10.1117/1.3481142
[790] PICAZO-BUENO J Á, ZALEVSKY Z, GARCÍA J, et al. Superresolved spatially multiplexed interferometric microscopy [J]. Optics Letters, 2017, 42(5): 927-930. doi:  10.1364/OL.42.000927
[791] MICO V, FERREIRA C, ZALEVSKY Z, et al. Spatially-multiplexed interferometric microscopy (SMIM): Converting a standard microscope into a holographic one [J]. Optics Express, 2014, 22(12): 14929-14943. doi:  10.1364/OE.22.014929
[792] GAO P, PEDRINI G, OSTEN W. Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy [J]. Optics Letters, 2013, 38(8): 1328. doi:  10.1364/OL.38.001328
[793] CHOWDHURY S, ELDRIDGE W J, WAX A, et al. Structured illumination multimodal 3D-resolved quantitative phase and fluorescence sub-diffraction microscopy [J]. Biomedical Optics Express, 2017, 8(5): 2496. doi:  10.1364/BOE.8.002496
[794] GABAI H, SHAKED N T. Dual-channel low-coherence interferometry and its application to quantitative phase imaging of fingerprints [J]. Optics Express, 2012, 20(24): 26906. doi:  10.1364/OE.20.026906
[795] GIRSHOVITZ P, SHAKED N T. Doubling the field of view in off-axis low-coherence interferometric imaging [J]. Light: Science & Applications, 2014, 3(3): e151. doi:  10.1038/lsa.2014.32
[796] FRENKLACH I, GIRSHOVITZ P, SHAKED N T. Off-axis interferometric phase microscopy with tripled imaging area [J]. Optics Letters, 2014, 39(6): 1525. doi:  10.1364/OL.39.001525
[797] BIAN L, SUO J, SITU G, et al. Content adaptive illumination for fourier ptychography [J]. Optics Letters, 2014, 39(23): 6648-6651. doi:  10.1364/OL.39.006648
[798] HE X, LIU C, ZHU J. Single-shot fourier ptychography based on diffractive beam splitting [J]. Optics Letters, 2018, 43(2): 214. doi:  10.1364/OL.43.000214
[799] LEE B, HONG J, YOO D, et al. Single-shot phase retrieval via Fourier ptychographic microscopy [J]. Optica, 2018, 5(8): 976-983. doi:  10.1364/OPTICA.5.000976
[800] TIAN L, LIU Z, YEH L-H, et al. Computational illumination for high-speed in vitro Fourier ptychographic microscopy [J]. Optica, 2015, 2(10): 904. doi:  10.1364/OPTICA.2.000904
[801] SUN J, ZUO C, ZHANG J, et al. High-speed Fourier ptychographic microscopy based on programmable annular illuminations[J/OL]. Scientific Reports, (2018–09–11). http://www.nature.com/articles/s41598-018-25797-8.
[802] SUN J, CHEN Q, ZHANG J, et al. Single-shot quantitative phase microscopy based on color-multiplexed Fourier Ptychography [J]. Optics Letters, 2018, 43(14): 3365. doi:  10.1364/OL.43.003365
[803] QIU Z, ZHANG Z, ZHONG J, et al. Comprehensive comparison of single-pixel imaging methods [J]. Optics and Lasers in Engineering, 2020, 134: 106301. doi:  10.1016/j.optlaseng.2020.106301
[804] NIPKOW P. Optical disk [J]. German patent, 1884, 30: 15.
[805] LOGIE B J. Apparatus for transmitting views or images to a distanc: US, US1699270A[P]. 1929-01-15.
[806] PITTMAN T B, SHIH Y H, STREKALOV D V, et al. Optical imaging by means of two-photon quantum entanglement [J]. Physical Review A, 1995, 52(5): R3429-R3432. doi:  10.1103/PhysRevA.52.R3429
[807] BENNINK R S, BENTLEY S J, BOYD R W. “Two-Photon” coincidence imaging with a classical source [J]. Physical Review Letters, 2002, 89(11): 113601. doi:  10.1103/PhysRevLett.89.113601
[808] GATTI A, BRAMBILLA E, BACHE M, et al. Ghost imaging with thermal light: Comparing entanglement and classical correlation [J]. Physical Review Letters, 2004, 93(9): 093602. doi:  10.1103/PhysRevLett.93.093602
[809] CAI Y, ZHU S-Y. Ghost imaging with incoherent and partially coherent light radiation [J]. Physical Review E, 2005, 71(5): 056607. doi:  10.1103/PhysRevE.71.056607
[810] BROMBERG Y, KATZ O, SILBERBERG Y. Ghost imaging with a single detector [J]. Physical Review A, 2009, 79(5): 053840. doi:  10.1103/PhysRevA.79.053840
[811] HAN S, YU H, SHEN X, et al. A review of ghost imaging via sparsity constraints [J]. Applied Sciences, 2018, 8(8): 1379. doi:  10.3390/app8081379
[812] FERRI F, MAGATTI D, LUGIATO L, et al. Differential ghost imaging [J]. Physical Review Letters, 2010, 104(25): 253603. doi:  10.1103/PhysRevLett.104.253603
[813] SUN B, WELSH S S, EDGAR M P, et al. Normalized ghost imaging [J]. Optics Express, 2012, 20(15): 16892-16901. doi:  10.1364/OE.20.016892
[814] VASILE T, DAMIAN V, COLTUC D, et al. Single pixel sensing for THz laser beam profiler based on Hadamard Transform [J]. Optics & Laser Technology, 2016, 79: 173-178.
[815] ZHANG Z, MA X, ZHONG J. Single-pixel imaging by means of Fourier spectrum acquisition [J]. Nature Communications, 2015, 6(1): 1-6.
[816] LIU B-L, YANG Z-H, LIU X, et al. Coloured computational imaging with single-pixel detectors based on a 2D discrete cosine transform [J]. Journal of Modern Optics, 2017, 64(3): 259-264. doi:  10.1080/09500340.2016.1229507
[817] MCCARTHY A, COLLINS R J, KRICHEL N J, et al. Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting [J]. Applied Optics, 2009, 48(32): 6241-6251. doi:  10.1364/AO.48.006241
[818] VELTEN A, WILLWACHER T, GUPTA O, et al. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging [J]. Nature Communications, 2012, 3: 745. doi:  10.1038/ncomms1747
[819] KEPPEL E. Approximating complex surfaces by triangulation of contour lines [J]. IBM Journal of Research and Development, 1975, 19(1): 2-11. doi:  10.1147/rd.191.0002
[820] BOYDE A. Stereoscopic images in confocal (tandem scanning) microscopy [J]. Science, 1985, 230(4731): 1270-1272. doi:  10.1126/science.4071051
[821] Zhang Z, Zhong J. Three-dimensional single-pixel imaging with far fewer measurements than effective image pixels [J]. Optics Letters, 2016, 41(11): 2497-2500. doi:  10.1364/OL.41.002497
[822] ZHANG Y, EDGAR M P, SUN B, et al. 3 D single-pixel video [J]. Journal of Optics, 2016, 18(3): 035203. doi:  10.1088/2040-8978/18/3/035203
[823] SALVADOR-BALAGUER E, LATORRE-CARMONA P, CHABERT C, et al. Low-cost single-pixel 3 D imaging by using an LED array [J]. Optics Express, 2018, 26(12): 15623-15631. doi:  10.1364/OE.26.015623
[824] SUN M-J, EDGAR M P, GIBSON G M, et al. Single-pixel three-dimensional imaging with time-based depth resolution [J]. Nature Communications, 2016, 7: 12010. doi:  10.1038/ncomms12010
[825] HOWLAND G A, DIXON P B, HOWELL J C. Photon-counting compressive sensing laser radar for 3 D imaging [J]. Applied Optics, 2011, 50(31): 5917-5920. doi:  10.1364/AO.50.005917
[826] ZHAO C, GONG W, CHEN M, et al. Ghost imaging lidar via sparsity constraints [J]. Applied Physics Letters, 2012, 101(14): 141123. doi:  10.1063/1.4757874
[827] HOWLAND G A, LUM D J, WARE M R, et al. Photon counting compressive depth mapping [J]. Optics Express, 2013, 21(20): 23822-23837. doi:  10.1364/OE.21.023822
[828] CHEN M, LI E, GONG W, et al. Ghost imaging lidar via sparsity constraints in real atmosphere [J]. Optics and Photonics Journal, 2013, 3(2): 83. doi:  10.4236/opj.2013.32B021
[829] YU H, LI E, GONG W, et al. Structured image reconstruction for three-dimensional ghost imaging lidar [J]. Optics Express, 2015, 23(11): 14541-14551. doi:  10.1364/OE.23.014541
[830] GONG W, ZHAO C, YU H, et al. Three-dimensional ghost imaging lidar via sparsity constraint [J]. Scientific Reports, 2016, 6: 26133. doi:  10.1038/srep26133
[831] QIU Z, ZHANG Z, ZHONG J. Efficient full-color single-pixel imaging based on the human vision property—“Giving in to the Blues” [J]. Optics Letters, 2020, 45(11): 3046-3049. doi:  10.1364/OL.389525
[832] ZHANG Z, LIU S, PENG J, et al. Simultaneous spatial, spectral, and 3D compressive imaging via efficient Fourier single-pixel measurements [J]. Optica, 2018, 5(3): 315. doi:  10.1364/OPTICA.5.000315
[833] STANTCHEV R I, YU X, BLU T, et al. Real-time terahertz imaging with a single-pixel detector[J/OL]. Nature Communications, 2020, 11(1): 2535. https://doi.org/10.1038/s41467-020-16370-x.
[834] PUSHKARSKY I, LIU Y, WEAVER W, et al. Automated single-cell motility analysis on a chip using lensfree microscopy [J]. Scientific Reports, 2014, 4: 4717. doi:  10.1038/srep04717
[835] KESAVAN S V, GARCIA F P N Y, MENNETEAU M, et al. Real-time label-free detection of dividing cells by means of lensfree video-microscopy [J]. Journal of Biomedical Optics, 2014, 19(3): 036004.
[836] LEE L M, CUI X, YANG C. The application of on-chip optofluidic microscopy for imaging giardia lamblia trophozoites and cysts [J]. Biomedical Microdevices, 2009, 11(5): 951. doi:  10.1007/s10544-009-9312-x
[837] COSKUN A F, SENCAN I, SU T-W, et al. Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects [J]. Optics Express, 2010, 18(10): 10510-10523. doi:  10.1364/OE.18.010510
[838] COSKUN A F, SU T-W, OZCAN A. Wide field-of-view lens-free fluorescent imaging on a chip [J]. Lab on A Chip, 2010, 10(7): 824-827. doi:  10.1039/B926561A
[839] SHANMUGAM A, SALTHOUSE C D. Lensless fluorescence imaging with height calculation [J]. Journal of Biomedical Optics, 2014, 19(1): 016002.
[840] OZCAN A, MCLEOD E. Lensless imaging and sensing [J]. Annual Review of Biomedical Engineering, 2016, 18(1): 77-102. doi:  10.1146/annurev-bioeng-092515-010849
[841] COSKUN A F, SENCAN I, SU T-W, et al. Wide-field lensless fluorescent microscopy using a tapered fiber-optic faceplate on a chip [J]. Analyst, 2011, 136(17): 3512-3518. doi:  10.1039/C0AN00926A
[842] KHADEMHOSSEINIEH B, SENCAN I, BIENER G, et al. Lensfree on-chip imaging using nanostructured surfaces [J]. Applied Physics Letters, 2010, 96(17): 171106. doi:  10.1063/1.3405719
[843] KHADEMHOSSEINIEH B, BIENER G, SENCAN I, et al. Lensfree color imaging on a nanostructured chip using compressive decoding [J]. Applied Physics Letters, 2010, 97(21): 211112. doi:  10.1063/1.3521410
[844] LEE S A, OU X, LEE J E, et al. Chip-scale fluorescence microscope based on a silo-filter complementary metal-oxide semiconductor image sensor [J]. Optics Letters, 2013, 38(11): 1817-1819. doi:  10.1364/OL.38.001817
[845] HAN C, PANG S, BOWER D V, et al. Wide field-of-view on-chip talbot fluorescence microscopy for longitudinal cell culture monitoring from within the Incubator [J]. Analytical Chemistry, 2013, 85(4): 2356-2360. doi:  10.1021/ac303356v
[846] COSKUN A F, SENCAN I, SU T-W, et al. Lensfree fluorescent on-chip imaging of transgenic caenorhabditis elegans over an ultra-wide field-of-view [J]. PLoS ONE, 2011, 6(1): e15955. doi:  10.1371/journal.pone.0015955
[847] MCLEOD E, DINCER T U, VELI M, et al. High-throughput and label-free single nanoparticle sizing based on time-resolved on-chip microscopy [J]. ACS Nano, 2015, 9(3): 3265-3273. doi:  10.1021/acsnano.5b00388
[848] MENG H, HUSSAIN F. In-line recording and off-axis viewing technique for holographic particle velocimetry [J]. Applied Optics, 1995, 34(11): 1827-1840. doi:  10.1364/AO.34.001827
[849] ISIKMAN S O, BISHARA W, OZCAN A. Partially coherent lensfree tomographic microscopy [J]. Applied Optics, 2011, 50(34): H253-H264. doi:  10.1364/AO.50.00H253
[850] SU T-W, ISIKMAN S O, BISHARA W, et al. Multi-angle lensless digital holography for depth resolved imaging on a chip [J]. Optics Express, 2010, 18(9): 9690-9711. doi:  10.1364/OE.18.009690
[851] KUMAR M, VIJAYAKUMAR A, ROSEN J. Incoherent digital holograms acquired by interferenceless coded aperture correlation holography system without refractive lenses [J]. Scientific Reports, 2017, 7(1): 11555. doi:  10.1038/s41598-017-11731-x
[852] MERTZ L, YOUNG N O. Fresnel transformations of images [J]. SPIE Milestone Series Ms, 1996, 128: 44-49.
[853] SHIMANO T, NAKAMURA Y, TAJIMA K, et al. Lensless light-field imaging with fresnel zone aperture: quasi-coherent coding [J]. Applied Optics, 2018, 57(11): 2841-2850. doi:  10.1364/AO.57.002841
[854] TAJIMA K, SHIMANO T, NAKAMURA Y, et al. Lensless light-field imaging with multi-phased fresnel zone aperture[C/OL]//2017 IEEE International Conference on Computational Photography (ICCP). Stanford, CA, USA: IEEE, 2017: 1–7.[2021–06–23]. http://ieeexplore.ieee.org/document/7951485/.
[855] SAO M, NAKAMURA Y, TAJIMA K, et al. Lensless close-up imaging with fresnel zone aperture [J]. Japanese Journal of Applied Physics, 2018, 57(9S1): 09SB05. doi:  10.7567/JJAP.57.09SB05
[856] WU J, ZHANG H, ZHANG W, et al. Single-shot lensless imaging with fresnel zone aperture and incoherent illumination [J]. Light: Science & Applications, 2020, 9(1): 53.
[857] ASIF M S, AYREMLOU A, SANKARANARAYANAN A, et al. FlatCam: Thin, lensless cameras using coded aperture and computation [J]. IEEE Transactions on Computational Imaging, 2017, 3(3): 384-397. doi:  10.1109/TCI.2016.2593662
[858] BOOMINATHAN V, ADAMS J K, ROBINSON J T, et al. PhlatCam: designed phase-mask based thin lensless camera [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(7): 1618-1629. doi:  10.1109/TPAMI.2020.2987489
[859] SCHILLING G. Catching gamma-ray bursts on the Wing [J]. Sky and Telescope, 2004, 107(3): 32-42.
[860] GREENWOOD D P. Bandwidth specification for adaptive optics systems [J]. JOSA, 1977, 67(3): 390-393. doi:  10.1364/JOSA.67.000390
[861] FRIED D L. Limiting resolution looking down through the atmosphere [J]. JOSA, 1966, 56(10): 1380-1384. doi:  10.1364/JOSA.56.001380
[862] FRIED D L. Anisoplanatism in adaptive optics [J]. JOSA, 1982, 72(1): 52-61. doi:  10.1364/JOSA.72.000052
[863] MURPHY D V. Atmospheric-turbulence compensation experiments using cooperative beacons [J]. Lincoln Laboratory Journal, 1992, 5: 25-44.
[864] MURPHY D V, PRIMMERMAN C A, ZOLLARS B G, et al. Experimental demonstration of atmospheric compensation using multiple synthetic beacons [J]. Optics Letters, 1991, 16(22): 1797-1799. doi:  10.1364/OL.16.001797
[865] FUGATE R Q, FRIED D, AMEER G, et al. Measurement of atmospheric wavefront distortion using scattered light from a laser guide-star [J]. Nature, 1991, 353(6340): 144. doi:  10.1038/353144a0
[866] PRIMMERMAN C, FOUCHE D. Thermal-blooming compensation: experimental observations using a deformable-mirror system [J]. Applied Optics, 1976, 15(4): 990-995. doi:  10.1364/AO.15.000990
[867] FOY R, LABEYRIE A. Feasibility of adaptive telescope with laser probe [J]. Astronomy and Astrophysics, 1985, 152: L29-L31.
[868] HUMPHREYS R, BRADLEY L, HERRMANN J. Sodium-layer synthetic beacons for adaptive optics [J]. The Lincoln Laboratory Journal, 1992, 5(1): 45-66.
[869] HARDY J W, LEFEBVRE J E, KOLIOPOULOS C. Real-time atmospheric compensation [J]. JOSA, 1977, 67(3): 360-369. doi:  10.1364/JOSA.67.000360
[870] HARDY J W. Adaptive optics for astronomical telescopes [J]. Physics Today, 2000, 53(4): 69-69. doi:  10.1063/1.2405463
[871] ELLERBROEK B, BRITTON M, DEKANY R, et al. Adaptive optics for the thirty meter telescope[C]//Astronomical Adaptive Optics Systems and Applications II. International Society for Optics and Photonics, 2005: 590304.
[872] VERNIN J, MUÑOZ-TUÑÓN C, SARAZIN M, et al. European extremely large telescope site characterization I: Overview [J]. Publications of the Astronomical Society of the Pacific, 2011, 123(909): 1334. doi:  10.1086/662995
[873] KERN P, MERKLE F, GAFFARD J P, et al. Prototype of an adaptive optical system for astronomical observation[C]//Real-Time Image Processing: Concepts and Technologies, 1988: 9–16.
[874] ROUSSET G, FONTANELLA J, KERN P, et al. First diffraction-limited astronomical images with adaptive optics [J]. Astronomy and Astrophysics, 1990, 230: L29-L32.
[875] FUGATE R Q. The Starfire optical range 3.5-m adaptive optical telescope[C]//Large Ground-based Telescopes, 2003: 934–944.
[876] ACTON D S, DUNN R B. Solar imaging at national solar observatory using a segmented adaptive optics system[C]//Active and Adaptive Optical Components and Systems II, 1993: 348–353.
[877] ROORDA A. Adaptive optics for studying visual function: A comprehensive review [J]. Journal of Vision, 2011, 11(5): 6. doi:  10.1167/11.5.6
[878] LIANG J, WILLIAMS D R, MILLER D T. Supernormal vision and high-resolution retinal imaging through adaptive optics [J]. JOSA A, 1997, 14(11): 2884-2892. doi:  10.1364/JOSAA.14.002884
[879] ROORDA A, WILLIAMS D R. The arrangement of the three cone classes in the living human eye [J]. Nature, 1999, 397(6719): 520. doi:  10.1038/17383
[880] XUEJUN L N Z Y R, YIYUN L X W C H, WENHAN J. A small adaptive optical imaging system for cells of living human retina [J]. Acta Optica Sinica, 2004, 24(9): 1153-1158. (in Chinese)
[881] SHI G, DAI Y, WANG L, et al. Adaptive optics optical coherence tomography for retina imaging [J]. Chinese Optics Letters, 2008, 6(6): 424-425. doi:  10.3788/COL20080606.0424
[882] LU J, LI H, HE Y, et al. Superresolution in adaptive optics confocal scanning laser ophthalmoscope [J]. Journal of Physics, 2011, 60(3): 266-275. (in Chinese)
[883] GU M. Principles of Three Dimensional Imaging in Confocal Microscopes[M]. Singapore: World Scientific, 1996.
[884] PAWLEY J. Handbook of Biological Confocal Microscopy[M]. Berlin: Springer Science & Business Media, 2010.
[885] WILSON T, OTHERS. Confocal Microscopy[M]. London: Academic Press London, 1990.
[886] BOOTH M J, NEIL M A, JUŠKAITIS R, et al. Adaptive aberration correction in a confocal microscope [J]. Proceedings of the National Academy of Sciences, 2002, 99(9): 5788-5792. doi:  10.1073/pnas.082544799
[887] TAO X, AZUCENA O, FU M, et al. Adaptive optics microscopy with direct wavefront sensing using fluorescent protein guide stars [J]. Optics Letters, 2011, 36(17): 3389. doi:  10.1364/OL.36.003389
[888] ALBERT O, SHERMAN L, MOUROU G, et al. Smart microscope: An adaptive optics learning system for aberration correction in multiphoton confocal microscopy [J]. Optics Letters, 2000, 25(1): 52. doi:  10.1364/OL.25.000052
[889] CHA J W, BALLESTA J. Shack-hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy [J]. Journal of Biomedical Optics, 2010, 15: 10.
[890] POTSAID B, BELLOUARD Y, WEN J T. Adaptive scanning optical microscope (ASOM): A multidisciplinary optical microscope design for large field of view and high resolution imaging [J]. Optics Express, 2005, 13(17): 6504-6518. doi:  10.1364/OPEX.13.006504
[891] WARBER M, MAIER S, HAIST T, et al. Combination of scene-based and stochastic measurement for wide-field aberration correction in microscopic imaging [J]. Applied Optics, 2010, 49(28): 5474. doi:  10.1364/AO.49.005474
[892] VERMEULEN P, MURO E, PONS T, et al. Adaptive optics for fluorescence wide-field microscopy using spectrally independent guide star and markers [J]. Journal of Biomedical Optics, 2011, 16(7): 076019. doi:  10.1117/1.3603847
[893] HELL S W, WICHMANN J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy [J]. Optics Letters, 1994, 19(11): 780. doi:  10.1364/OL.19.000780
[894] DÉBARRE D, BOTCHERBY E J, BOOTH M J, et al. Adaptive optics for structured illumination microscopy [J]. Optics Express, 2008, 16(13): 9290. doi:  10.1364/OE.16.009290
[895] PATTON B R, BURKE D, OWALD D, et al. Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics. [J]. Optics Express, 2016, 24(8): 8862-8876. doi:  10.1364/OE.24.008862
[896] GOULD T J, KROMANN E B, BURKE D, et al. Auto-aligning stimulated emission depletion microscope using adaptive optics [J]. Optics Letters, 2013, 38(11): 1860. doi:  10.1364/OL.38.001860
[897] GOULD T J, BURKE D, BEWERSDORF J, et al. Adaptive optics enables 3 D STED microscopy in aberrating specimens [J]. Optics Express, 2012, 20(19): 20998. doi:  10.1364/OE.20.020998
[898] NING Y, JIANG W, LING N, et al. Response function calculation and sensitivity comparison analysis of various bimorph deformable mirrors [J]. Optics Express, 2007, 15(19): 12030-12038. doi:  10.1364/OE.15.012030
[899] ROOMS F, CAMET S, CHARTON J, et al. A new deformable mirror and experimental setup for free-space optical communication[C]//Free-Space Laser Communication Technologies XXI, 2009: 71990 O.
[900] BIFANO T G, PERREAULT J A, BIERDEN P A. Micromachined deformable mirror for optical wavefront compensation[C]//High-Resolution Wavefront Control: Methods, Devices, and Applications II, 2000: 7–15.
[901] LOVE G D. Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator [J]. Applied Optics, 1997, 36(7): 1517-1524. doi:  10.1364/AO.36.001517
[902] CAI D, YAO J, JIANG W. Performance of liquid-crystal spatial light modulator using for wave-front correction [J]. Acta Optica Sinica, 2009, 29(2): 285-291. (in Chinese) doi:  10.3788/AOS20092902.0285
[903] GUO Y, ZHANG A, FAN X, et al. First on-sky demonstration of the piezoelectric adaptive secondary mirror [J]. Optics Letters, 2016, 41(24): 5712-5715. doi:  10.1364/OL.41.005712
[904] VORONTSOV M, CARHART G, RICKLIN J. Adaptive phase-distortion correction based on parallel gradient-descent optimization [J]. Optics Letters, 1997, 22(12): 907-909. doi:  10.1364/OL.22.000907
[905] YANG H, LI X, JIANG W. High resolution imaging of phase-distorted extended object using SPGD algorithm and deformable mirror[C]//Optical Design and Testing III, 2007: 683411.
[906] WANG J, BAI F, NING Y, et al. Wavefront response matrix for closed-loop adaptive optics system based on non-modulation pyramid wavefront sensor [J]. Optics Communications, 2012, 285(12): 2814-2820. doi:  10.1016/j.optcom.2012.02.026
[907] WANG S, WEI K, ZHENG W, et al. First light on an adaptive optics system using a non-modulation pyramid wavefront sensor for a 1.8 m telescope [J]. Chinese Optics Letters, 2016, 14(10): 100101. doi:  10.3788/COL201614.100101
[908] DONG J, BI R, HO J-H, et al. Diffuse correlation spectroscopy with a fast Fourier transform-based software autocorrelator [J]. Journal of Biomedical Optics, 2012, 17(9): 097004.
[909] GIBSON A, HEBDEN J, ARRIDGE S R. Recent advances in diffuse optical imaging [J]. Physics in Medicine & Biology, 2005, 50(4): R1.
[910] BI R, DONG J, LEE K. Multi-channel deep tissue flowmetry based on temporal diffuse speckle contrast analysis [J]. Optics Express, 2013, 21(19): 22854-22861. doi:  10.1364/OE.21.022854
[911] VARMA H M, VALDES C P, KRISTOFFERSEN A K, et al. Speckle contrast optical tomography: A new method for deep tissue three-dimensional tomography of blood flow [J]. Biomedical Optics Express, 2014, 5(4): 1275-1289. doi:  10.1364/BOE.5.001275
[912] WANG L V, HU S. Photoacoustic tomography: In vivo imaging from organelles to organs [J]. Science, 2012, 335(6075): 1458-1462. doi:  10.1126/science.1216210
[913] BAYER E, SCHAACK G. Two-photon absorption of CaF2: Eu2+ [J]. Physica Status Solidi (B), 1970, 41(2): 827-835. doi:  10.1002/pssb.19700410239
[914] DENK W, STRICKLER J H, WEBB W W. Two-photon laser scanning fluorescence microscopy [J]. Science, 1990, 248(4951): 73-76. doi:  10.1126/science.2321027
[915] FERCHER A, MENGEDOHT K, WERNER W. Eye-length measurement by interferometry with partially coherent light [J]. Optics Letters, 1988, 13(3): 186-188. doi:  10.1364/OL.13.000186
[916] HUANG D, SWANSON E A, LIN C P, et al. Optical coherence tomography [J]. Science, 1991, 254(5035): 1178-1181. doi:  10.1126/science.1957169
[917] VELLEKOOP I M, MOSK A P. Focusing coherent light through opaque strongly scattering media [J]. Optics Letters, 2007, 32(16): 2309. doi:  10.1364/OL.32.002309
[918] POPOFF S M, LEROSEY G, CARMINATI R, et al. Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media [J]. Physical Review Letters, 2010, 104(10): 100601. doi:  10.1103/PhysRevLett.104.100601
[919] VELLEKOOP I M. Feedback-based wavefront shaping [J]. Optics Express, 2015, 23(9): 12189-12206. doi:  10.1364/OE.23.012189
[920] POPOFF S, LEROSEY G, FINK M, et al. Image transmission through an opaque material [J]. Nature Communications, 2010, 1: 81. doi:  10.1038/ncomms1078
[921] CUI M. Parallel wavefront optimization method for focusing light through random scattering media [J]. Optics Letters, 2011, 36(6): 870-872. doi:  10.1364/OL.36.000870
[922] LEITH E N, UPATNIEKS J. Holographic imagery through diffusing media [J]. JOSA, 1966, 56(4): 523-523. doi:  10.1364/JOSA.56.000523
[923] KATZ O, HEIDMANN P, FINK M, et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations [J]. Nature Photonics, 2014, 8(10): 784-790. doi:  10.1038/nphoton.2014.189
[924] YAQOOB Z, PSALTIS D, FELD M S, et al. Optical phase conjugation for turbidity suppression in biological samples [J]. Nature Photonics, 2008, 2(2): 110. doi:  10.1038/nphoton.2007.297
[925] BERTOLOTTI J, VAN PUTTEN E G, BLUM C, et al. Non-invasive imaging through opaque scattering layers [J]. Nature, 2012, 491(7423): 232. doi:  10.1038/nature11578
[926] YANG W, LI G, SITU G. Imaging through scattering media with the auxiliary of a known reference object [J]. Scientific Reports, 2018, 8(1): 9614. doi:  10.1038/s41598-018-27754-x
[927] LYU M, WANG H, LI G, et al. Deep speckle correlation: A deep learning approach toward scalable imaging through scattering media [J]. Optica, 2018, 5(10): 1181-1190.
[928] MENG L, WANG H, LI G, et al. Learning-based lensless imaging through optically thick scattering media [J]. Advanced Photonics, 2019, 1(3): 10. doi:  10.1364/OPTICA.5.001181
[929] VELTEN A, RASKAR R, WU D, et al. Femto-photography: Capturing and visualizing the propagation of light [J]. ACM Transactions on Graphics, 2013, 32(4): 1-8. doi:  10.1145/2461912.2461928
[930] MIKAMI H, GAO L, GODA K. Ultrafast optical imaging technology: Principles and applications of emerging methods [J]. Nanophotonics, 2016, 5(4): 497-509. doi:  10.1515/nanoph-2016-0026
[931] ZHU L, CHEN Y, LIANG J, et al. Space- and intensity-constrained reconstruction for compressed ultrafast photography [J]. Optica, 2016, 3(7): 694-697. doi:  10.1364/OPTICA.3.000694
[932] LAURENZIS M, VELTEN A. Nonline-of-sight laser gated viewing of scattered photons [J]. Optical Engineering, 2014, 53(2): 023102. doi:  10.1117/1.OE.53.2.023102
[933] REPASI E, LUTZMANN P, STEINVALL O, et al. Advanced short-wavelength infrared range-gated imaging for ground applications in monostatic and bistatic configurations [J]. Applied Optics, 2009, 48(31): 5956-5969. doi:  10.1364/AO.48.005956
[934] SEN P, CHEN B, GARG G, et al. Dual photography [J]. ACM Transactions on Graphics (TOG), 2005, 24(3): 745-755. doi:  10.1145/1073204.1073257
[935] ZHANG Z, JIAO S, YAO M, et al. Secured single-pixel broadcast imaging [J]. Optics Express, 2018, 26(11): 14578-14591. doi:  10.1364/OE.26.014578
[936] BUTTAFAVA M, ZEMAN J, TOSI A, et al. Non-line-of-sight imaging using a time-gated single photon avalanche diode [J]. Optics Express, 2015, 23(16): 20997-21011. doi:  10.1364/OE.23.020997
[937] JIN C, XIE J, ZHANG S, et al. Reconstruction of multiple non-line-of-sight objects using back projection based on ellipsoid mode decomposition [J]. Optics Express, 2018, 26(16): 20089-20101. doi:  10.1364/OE.26.020089
[938] O’TOOLE M, LINDELL D B, WETZSTEIN G. Confocal non-line-of-sight imaging based on the light-cone transform [J]. Nature, 2018, 555(7696): 338-341. doi:  10.1038/nature25489
[939] WU C, LIU J, HUANG X, et al. Non–line-of-sight imaging over 1.43 km [J]. Proceedings of the National Academy of Sciences, 2021, 118(10): e2024468118. doi:  10.1073/pnas.2024468118
[940] SCRIBNER D A, KRUER M R, KILLIANY J M. Infrared focal plane array technology [J]. Proceedings of the IEEE, 1991, 79(1): 66-85. doi:  10.1109/5.64383
[941] MILTON A F, BARONE F R, KRUER M R. Influence of nonuniformity on infrared focal plane array performance [J]. Optical Engineering, 1985, 24(5): 245855. doi:  10.1117/12.7973588
[942] PERRY D L, DERENIAK E L. Linear theory of nonuniformity correction in infrared staring sensors [J]. Optical Engineering, 1993, 32(8): 1854-1860. doi:  10.1117/12.145601
[943] SCHULZ M, CALDWELL L. Nonuniformity correction and correctability of infrared focal plane arrays [J]. Infrared Physics & Technology, 1995, 36(4): 763-777. doi:  10.1016/1350-4495(94)00002-3
[944] SCRIBNER D A, SARKADY K A, CAULFIELD J T, et al. Nonuniformity correction for staring IR focal plane arrays using scene-based techniques[C/OL]//Infrared Detectors and Focal Plane Arrays. International Society for Optics and Photonics, 1990: 224–233.[2019–06–09].https://www.spiedigitallibrary.org/conference-proceedings-of-spie/1308/0000/Nonuniformity-correction-for-staring-IR-focal-plane-arrays-using-scene/10.1117/12.21730.short.
[945] DUGDALE S J. A practitioner’s guide to thermal infrared remote sensing of rivers and streams: Recent advances, precautions and considerations [J]. Wiley Interdisciplinary Reviews:Water, 2016, 3(2): 251-268. doi:  10.1002/wat2.1135
[946] SCRIBNER D A, SARKADY K A, KRUER M R, et al. Adaptive nonuniformity correction for IR focal-plane arrays using neural networks[C/OL]//Infrared Sensors: Detectors, Electronics, and Signal Processing. International Society for Optics and Photonics, 1991: 100–109.[2019–06–09].https://www.spiedigitallibrary.org/conference-proceedings-of-spie/1541/0000/Adaptive-nonuniformity-correction-for-IR-focal-plane-arrays-using-neural/10.1117/12.49324.short.
[947] HARRIS J G, CHIANG Y-M. Nonuniformity correction using the constant-statistics constraint: Analog and digital implementations[C/OL]//Infrared Technology and Applications XXIII. International Society for Optics and Photonics, 1997: 895–905.[2019–06–09].https://www.spiedigitallibrary.org/conference-proceedings-of-spie/3061/0000/Nonuniformity-correction-using-the-constant-statistics-constraint--analog-and/10.1117/12.280308.short.
[948] HARRIS J G, CHIANG Y-M. Minimizing the ghosting artifact in scene-based nonuniformity correction[C/OL]//Infrared Imaging Systems: Design, Analysis, Modeling, and Testing IX. International Society for Optics and Photonics, 1998: 106–113. [2019–06–09].https://www.spiedigitallibrary.org/conference-proceedings-of-spie/3377/0000/Minimizing-the-ghosting-artifact-in-scene-based-nonuniformity-correction/10.1117/12.319364.short.
[949] HARRIS J G, CHIANG YU-MING. Nonuniformity correction of infrared image sequences using the constant-statistics constraint [J]. IEEE Transactions on Image Processing, 1999, 8(8): 1148-1151. doi:  10.1109/83.777098
[950] HAYAT M M, TORRES S N, ARMSTRONG E, et al. Statistical algorithm for nonuniformity correction in focal-plane arrays [J]. Applied Optics, 1999, 38(5): 772-780. doi:  10.1364/AO.38.000772
[951] TORRES S N, HAYAT M M. Kalman filtering for adaptive nonuniformity correction in infrared focal-plane arrays [J]. JOSA A, 2003, 20(3): 470-480. doi:  10.1364/JOSAA.20.000470
[952] TORRES S N, PEZOA J E, HAYAT M M. Scene-based nonuniformity correction for focal plane arrays by the method of the inverse covariance form [J]. Applied Optics, 2003, 42(29): 5872-5881. doi:  10.1364/AO.42.005872
[953] TORRES S N, VERA E M, REEVES R A, et al. Adaptive scene-based nonuniformity correction method for infrared-focal plane arrays[C/OL]//Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XIV. International Society for Optics and Photonics, 2003: 130–139. [2019–06–09].https://www.spiedigitallibrary.org/conference-proceedings-of-spie/5076/0000/Adaptive-scene-based-nonuniformity-correction-method-for-infrared-focal-plane/10.1117/12.487217.short.
[954] VERA E, TORRES S. Fast adaptive nonuniformity correction for infrared focal-plane array detectors [J]. EURASIP Journal on Advances in Signal Processing, 2005, 2005(13): 560759. doi:  10.1155/ASP.2005.1994
[955] PEZOA J E, HAYAT M M, TORRES S N, et al. Multimodel Kalman filtering for adaptive nonuniformity correction in infrared sensors [J]. JOSA A, 2006, 23(6): 1282-1291. doi:  10.1364/JOSAA.23.001282
[956] HARDIE R C, HAYAT M M, ARMSTRONG E, et al. Scene-based nonuniformity correction with video sequences and registration [J]. Applied Optics, 2000, 39(8): 1241-1250. doi:  10.1364/AO.39.001241
[957] RATLIFF B M, HAYAT M M, HARDIE R C. An algebraic algorithm for nonuniformity correction in focal-plane arrays [J]. JOSA A, 2002, 19(9): 1737-1747. doi:  10.1364/JOSAA.19.001737
[958] RATLIFF B M, HAYAT M M, TYO J S. Radiometrically accurate scene-based nonuniformity correction for array sensors [J]. JOSA A, 2003, 20(10): 1890-1899. doi:  10.1364/JOSAA.20.001890
[959] ZUO C, CHEN Q, GU G, et al. Scene-based nonuniformity correction algorithm based on interframe registration [J]. JOSA A, 2011, 28(6): 1164-1176. doi:  10.1364/JOSAA.28.001164
[960] ZUO C, CHEN Q, GU G, et al. Improved interframe registration based nonuniformity correction for focal plane arrays [J]. Infrared Physics & Technology, 2012, 55(4): 263-269. doi:  10.1016/j.infrared.2012.04.002
[961] ZUO C, ZHANG Y, CHEN Q, et al. A two-frame approach for scene-based nonuniformity correction in array sensors [J]. Infrared Physics & Technology, 2013, 60: 190-196. doi:  10.1016/j.infrared.2013.05.001
[962] BLACK W T, TYO J S. Feedback-integrated scene cancellation scene-based nonuniformity correction algorithm [J]. Journal of Electronic Imaging, 2014, 23(2): 023005. doi:  10.1117/1.JEI.23.2.023005
[963] TORRES S N, VERA E M, REEVES R A, et al. Scene-based non-uniformity correction method using constant range: Performance and analysis[C]//Proceedings of the 6th SCI, IX: 224–229.
[964] ZHANG T, SHI Y. Edge-directed adaptive nonuniformity correction for staring infrared focal plane arrays [J]. Optical Engineering, 2006, 45(1): 016402. doi:  10.1117/1.2158404
[965] ROSSI A, DIANI M, CORSINI G. Temporal statistics de-ghosting for adaptive non-uniformity correction in infrared focal plane arrays [J]. Electronics Letters, 2010, 46(5): 348-349. doi:  10.1049/el.2010.3559
[966] QIAN W, CHEN Q, GU G. Space low-pass and temporal high-pass nonuniformity correction algorithm [J]. Optical Review, 2010, 17(1): 24-29. doi:  10.1007/s10043-010-0005-8
[967] ZUO C, CHEN Q, GU G, et al. New temporal high-pass filter nonuniformity correction based on bilateral filter [J]. Optical Review, 2011, 18(2): 197-202. doi:  10.1007/s10043-011-0042-y
[968] ZHANG C, ZHAO W. Scene-based nonuniformity correction using local constant statistics [J]. JOSA A, 2008, 25(6): 1444-1453. doi:  10.1364/JOSAA.25.001444
[969] ZUO C, CHEN Q, GU G, et al. Scene-based nonuniformity correction method using multiscale constant statistics [J]. Optical Engineering, 2011, 50(8): 087006. doi:  10.1117/1.3610978
[970] ROSSI A, DIANI M, CORSINI G. Bilateral filter-based adaptive nonuniformity correction for infrared focal-plane array systems [J]. Optical Engineering, 2010, 49(5): 057003. doi:  10.1117/1.3425660
[971] VERA E, MEZA P, TORRES S. Total variation approach for adaptive nonuniformity correction in focal-plane arrays [J]. Optics Letters, 2011, 36(2): 172-174. doi:  10.1364/OL.36.000172
[972] RATLIFF B M, HAYAT M M, TYO J S. Generalized algebraic scene-based nonuniformity correction algorithm [J]. JOSA A, 2005, 22(2): 239-249. doi:  10.1364/JOSAA.22.000239
[973] ZUO C, CHEN Q, GU G, et al. Registration method for infrared images under conditions of fixed-pattern noise [J]. Optics Communications, 2012, 285(9): 2293-2302. doi:  10.1016/j.optcom.2012.01.019
[974] LIU N, XIE J. Interframe phase-correlated registration scene-based nonuniformity correction technology [J]. Infrared Physics & Technology, 2015, 69: 198-205. doi:  10.1016/j.infrared.2015.01.004
[975] BOUTEMEDJET A, DENG C, ZHAO B. Robust approach for nonuniformity correction in infrared focal plane array [J]. Sensors, 2016, 16(11): 1890. doi:  10.3390/s16111890
[976] ANTIPA N, KUO G, HECKEL R, et al. DiffuserCam: Lensless single-exposure 3D imaging [J]. Optica, 2018, 5(1): 1-9. doi:  10.1364/OPTICA.5.000001
[977] BARBASTATHIS G, OZCAN A, SITU G. On the use of deep learning for computational imaging [J]. Optica, 2019, 6(8): 921. doi:  10.1364/OPTICA.6.000921
[978] ZUO CHAO, FENG SHIJIE, ZHANG XIANGYU, et al. Deep learning based computational imaging: Status, challenges, and future [J]. Acta Optica Sinica, 2020, 40(1): 0111003. (in Chinese) doi:  10.3788/AOS202040.0111003
[979] FEI W, HAO W, YAOMING B. Application of deep learning in computational imaging [J]. Acta Optica Sinica, 2020, 40(1): 14. (in Chinese)
[980] KHORASANINEJAD M, CHEN W T, DEVLIN R C, et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging [J]. Science, 2016, 352(6290): 1190-1194. doi:  10.1126/science.aaf6644
[981] LALANNE P, CHAVEL P. Metalenses at visible wavelengths: Past, present, perspectives [J]. Laser & Photonics Reviews, 2017, 11(3): 1600295. doi:  10.1002/lpor.201600295
[982] CHEN W T, ZHU A Y, SANJEEV V, et al. A broadband achromatic metalens for focusing and imaging in the visible [J]. Nature Nanotechnology, 2018, 13(3): 220. doi:  10.1038/s41565-017-0034-6
[983] WANG S, WU P C, SU V-C, et al. A broadband achromatic metalens in the visible [J]. Nature Nanotechnology, 2018, 13(3): 227. doi:  10.1038/s41565-017-0052-4
[984] ZHANG L, MEI S, HUANG K, et al. Advances in full control of electromagnetic waves with metasurfaces [J]. Advanced Optical Materials, 2016, 4(6): 818-833. doi:  10.1002/adom.201500690
[985] HUANG K, QIN F, LIU H, et al. Planar diffractive lenses: Fundamentals, functionalities, and applications [J]. Advanced Materials, 2018, 30(26): 1704556. doi:  10.1002/adma.201704556
[986] COLBURN S, ZHAN A, MAJUMDAR A. Metasurface optics for full-color computational imaging [J]. Science Advances, 2018, 4(2): eaar2114. doi:  10.1126/sciadv.aar2114
[987] LIN R J, SU V-C, WANG S, et al. Achromatic metalens array for full-colour light-field imaging [J]. Nature Nanotechnology, 2019, 14(3): 227. doi:  10.1038/s41565-018-0347-0
[988] LI C, ZHANG X, LI J, et al. The challenges of modern computing and new opportunities for optics [J]. PhotoniX, 2021, 2(1): 20. doi:  10.1186/s43074-021-00042-0
[989] LIN X, RIVENSON Y, YARDIMCI N T, et al. All-optical machine learning using diffractive deep neural networks [J]. Science, 2018, 361(6406): 1004-1008. doi:  10.1126/science.aat8084