[1] Hubert Jerominek, Francis Picard, Swart Nicholas R, et al. Micromachined uncooled VO2-based IR bolometer arrays[C]//Proc of SPIE, 1996, 2746: 60-71.
[2] Lei S Y. Uncooled infrared focal plane array imaging in China[C]//Proc of SPIE, 2015, 9451: 945119.
[3] Balcerak R. Uncooled infrared sensors: rapid growth and future perspective[C]//Proc of SPIE, 2000, 4028:36-39.
[4] Takasawa S. Uncooled LWIR imaging: applications and market analysis[C]//Proc of SPIE, 2015, 9481: 94810H.
[5] Wood R A, Han C J, Kruse P W. Integrated uncooled infrared detector imaging arrays[C]//IEEE, 1992: 132-135.
[6] 王成刚, 宋广. 非制冷红外焦平面探测器热敏薄膜技术研究进展[J]. 激光与红外, 2017, 47(8): 927-929. doi:  10.3969/j.issn.1001-5078.2017.08.001

Wang Chenggang, Song Guang. Development of sensitive film technology for uncooled infrared focal plane array detector [J]. Laser & Infrared, 2017, 47(8): 927-929. (in Chinese) doi:  10.3969/j.issn.1001-5078.2017.08.001
[7] Bañobre A. Silicon based uncooled microbolometer[D]. New Jersey: New Jersey Institute of Technology, 2018.
[8] Lamsal C, Ravindra N M. Simulation of spectral emissivity of vanadium oxides (VOx)-based microbolometer structures [J]. Emerging Materials Research, 2014, 3(4): 194-202.
[9] Bhan R K, Saxena R S, Jalwania C R, et al. Uncooled infrared microbolometer arrays and their characterisation techniques [J]. Defence Science Journal, 2009, 59(6): 580-589.
[10] Sherif Sedky P F, Kris Baert, Lou Hermans, et al. Characterization and optimization of infrared poly SiGe bolometers [J]. IEEE Transactions On Electron Devices, 1999, 46(4): 675-682.
[11] Richards P L. Bolometers for infrared and millimeter waves [J]. Journal of Applied Physics, 1994, 76(1): 1-24.
[12] 冯涛, 金伟其, 司俊杰. 非制冷红外焦平面探测器及其技术发展动态[J]. 红外技术, 2015(3): 177-184. doi:  10.11846/j.issn.1001_8891.201503001

Feng T, Jin W Q, Si J J. Uncooled infrared focal plane detector and its technology development trends [J]. Infrared Technology, 2015(3): 177-184. (in Chinese) doi:  10.11846/j.issn.1001_8891.201503001
[13] 俞白军. 氧化钒非制冷红外焦平面探测器读出电路设计[D]. 南京: 东南大学, 2018.

Yu Baijun. Design of readout circuit of vanadium oxide uncooled infrared focal plane detector[D]. Nanjing: Southeast University, 2018.(in Chinese)
[14] Trouilleau C, Fièque B, Noblet S, et al. High-performance uncooled amorphous silicon TEC less XGA IRFPA with 17 μm pixel-pitch[C]//Proc of SPIE, 2009, 7298: 72980Q.
[15] Carapezza E M, Grealish K, Kacir T, et al. An advanced infrared thermal imaging module for military and commercial applications[C]//Proc of SPIE, 2005, 5796: 186-192.
[16] Benirschke D, Howard S. Characterization of a low-cost, commercially available, vanadium oxide microbolometer array for spectroscopic imaging [J]. Optical Engineering, 2017, 56(4): 040502.
[17] Rogalski A, Martyniuk P, Kopytko M. Challenges of small-pixel infrared detectors: a review [J]. Rep Prog Phys, 2016, 79(4): 046501.
[18] Gong H, Wu N, Ni Y, et al. Design, fabrication and testing of 17 μm pitch 640×480 uncooled infrared focal plane array detector[C]//Proc of SPIE, 2015, 9674: 96740W.
[19] Andresen B F, Fulop G F, Hanson C M, et al. Novel vacuum packaged 384×288 broadband bolometer FPA with enhanced absorption in 3-14 μm wavelength[C]//Proc of SPIE, 2017, 10177: 101771R.
[20] Kimata M, Tokuda T, Tsuchinaga A, et al. Vacuum packaging technology for uncooled infrared sensor [J]. IEEE Transactions on Electrical and Electronic Engineering, 2010, 5(2): 175-180.
[21] 王强, 张有刚. 非制冷红外焦平面探测器封装技术研究进展[J]. 红外技术, 2018, 40(9): 837-842.

Wang Qiang, Zhang Yougang. Research progress of the packaging techniques for uncooled infrared focal plane arrays [J]. Infrared Technology, 2018, 40(9): 837-842. (in Chinese)
[22] Esashi M. Wafer level packaging of MEMS [J]. Journal of Micromechanics and Microengineering, 2008, 18(7): 073001.
[23] Dumont G, Rabaud W, Baillin X, et al. Pixel level packaging for uncooled IRFPA[C]//Proc of SPIE, 2011, 8012: 80121I.
[24] FLIR Products[EB/OL]. (2020-10-15)[2020-10-30]https://www.flir.cn/browse/camera-cores-amp-components/thermal-camera-cores/lwir/.
[25] DRS. Products[EB/OL]. (2020-10-15)[2020-10-30].https://www.leonardodrs.com/commercial-infrared/products/thermal-imaging-detectors/.
[26] Lynred. Products[EB/OL]. (2020-10-15)[2020-10-30]https://www.lynred.com/products.
[27] SCD. USA-IR. Products[EB/OL]. (2020-10-15)[2020-10-30]https://scdusa-ir.com/products/.
[28] Iray. USA-IR. Products[EB/OL]. (2020-10-15)[2020-10-30]http://www.iraytek.com/products/tcq/%CE%BCm12/.
[29] DALI. Products[EB/OL]. (2020-10-15)[2020-10-30]http://www.dali-tech.com/products/13.
[30] 高芯科技. Products[EB/OL]. (2020-10-15)[2020-10-30]http://www.gst-ir.com/product/index/mid/27.html.
[31] GWIC. Products[EB/OL]. (2020-10-15)[2020-10-30]http://www.gwic.com.cn/product.html.
[32] Ishikawa T, Ueno M, Endo K, et al. Low-cost 320×240 uncooled IRFPA using a conventional silicon IC process[C]//Proc of SPIE, 1999, 3698.
[33] Ueno M, Kosasayama Y, Sugino T, et al. 640×480 pixel uncooled infrared FPA with SOI diode detectors[C]//Proc of SPIE, 2005, 5783:566-577.
[34] Fujisawa D, Hanaoka M, Kosasayama Y, et al. Development of new pixel structure for beyond 12 µm pixel pitch SOI diode uncooled IRFPAs[C]//Proc of SPIE, 2020, 111407: 114071A.
[35] 王司东, 徐德辉, 熊斌, 等. MEMS热电堆传感器的红外探测系统[J]. 传感器与微系统, 2017, 36(2): 107-113.

Wang S D, Xu D H, Xiong B, et al. Infrared detection system based on MEMS thermopile sensor [J]. Transducer and Microsystem Technologies, 2017, 36(2): 107-113. (in Chinese)
[36] 高璇. CMOS兼容的微机械热电堆红外探测器的设计[D]. 太原: 中北大学, 2013.

Gao X. Design of CMOS compatible micromechanical thermopile infrared detector[D]. Taiyuan: North University of China, 2013.
[37] Ivanov S D, Kostsov E G. Thermal detectors of uncooled multi-element infrared imaging arrays. I. Thermally insulated elements [J]. Optoelectronics, Instrumentation and Data Processing, 2016, 51(6): 601-608.
[38] Hyseni G, Caka N, Hyseni K. Infrared thermal detectors parameters: Semiconductor bolometers versus pyroelectrics [J]. WSEAS Transactions on Circuits and Systems, 2010, 9: 238-247.
[39] Okuyama M, Togami Y, Hamakawa Y, et al. Pyroelectric infrared-CCD image sensor using LiTaO3 [J]. Sensors and Actuators, 1989, 16(3): 263-271.
[40] Pyreos. Products[EB/OL]. (2020-10-15)[2020-10-30] https://pyreos.com/.
[41] InfraTec. Products[EB/OL]. (2020-10-15)[2020-10-30]https://www.infratec.cn/.
[42] 邵秀梅, 龚海梅, 李雪, 等. 高性能短波红外InGaAs焦平面探测器研究进展[J]. 红外技术, 2016, 38(8): 629-635.

Shao Xiumei, Gong Haimei, Li Xue, et al. Research progress of high-performance short-wave infrared InGaAs focal plane detectors [J]. Infrared Technology, 2016, 38(8): 629-635. (in Chinese)
[43] Saraf T, Brouk I, Bar-Lev Shefi S, et al. CMOS-SOI-MEMS uncooled infrared security sensor with integrated readout[J].IEEE Journal of the Electron Devices Society, 2016, 4(3): 155-162.
[44] Li Q, Yu B Q, Li Z F, et al. Surface plasmon-enhanced dual-band infrared absorber for VOx-based microbolometer application [J]. Chinese Physics B, 2017, 26(8): 085202.
[45] Du K, Li Q, Zhang W, et al. Wavelength and thermal distribution selectable microbolometers based on metamaterial absorbers[J].IEEE Photonics Journal, 2015, 7(3): 1-8.
[46] Varpula A, Tappura K, Tiira J, et al. Nano-Thermoelectric Infrared Bolometer [J]. arXiv, 2019.
[47] Varpula A, Grigoras K, Tappura K, et al. Silicon based nano-thermoelectric bolometers for infrared detection [J]. Proceedings, 2018, 2(13): 894.
[48] Ouyang C, Zhou W, Wu J, et al. Uncooled bolometer based on Mn1.56Co0.96Ni0.48O4 thin films for infrared detection and thermal imaging [J]. Applied Physics Letters, 2014, 105(2): 022105.
[49] Lutful Hai M, Cheng Q, Hesan M, et al. Amorphous SixGeyO1−xy thin films for uncooled infrared microbolometers [J]. Infrared Physics & Technology, 2018, 95: 227-235.
[50] Sassi U, Parret R, Nanot S, et al. Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance [J]. Nat Commun, 2017, 8: 14311.
[51] Shimatani M, Fukushima S, Okuda S, et al. Room temperature long-wavelength infrared graphene photodetectors using photogating via the pyroelectric effect[C]//Proc of SPIE, 2020, 11407: 1140717.
[52] Tang X, Ackerman M M, Shen G, et al. Towards infrared electronic eyes: flexible colloidal quantum dot photovoltaic detectors enhanced by resonant cavity [J]. Small, 2019, 15(12): e1804920.
[53] Fu J, Shang H, Shi H, et al. Design optimization and performance analysis of deformed optical readout focal plane array [J]. Journal of Micromechanics and Microengineering, 2015, 25(6): 065012.
[54] Shi H, Zhang Q, Qian J, et al. Optical sensitivity analysis of deformed mirrors for microcantilever array IR imaging [J]. Opt Express, 2009, 17(6): 4367-4381.
[55] Ren D, Azizur-Rahman K M, Rong Z, et al. Room-temperature midwavelength infrared inassb nanowire photodetector arrays with Al2O3 passivation [J]. Nano Lett, 2019, 19(5): 2793-2802.
[56] Ren D, Meng X, Rong Z, et al. Uncooled photodetector at short-wavelength infrared using InAs nanowire photoabsorbers on InP with p-n heterojunctions [J]. Nano Lett, 2018, 18(12): 7901-7908.
[57] Weng Binbin, Qiu Jijun, Zhao Lihua , et al. Recent development on the uncooled mid-infrared PbSe detectors with high detectivity[C]//Proc of SPIE, 2014, 8993: 899311.
[58] Koppula A K R K, Abdullah A A, Liu T, et al. Material response of metasurface integrated uncooled silicon germanium oxide SixGeyO1-x-y infrared microbolometers[C]//Proc of SPIE, 2019, 11002: 110021L.
[59] Tang X, Ackerman M M, Chen M, et al. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes [J]. Nature Photonics, 2019, 13(4): 277-282.
[60] Hinds S, Klem E, Gregory C, et al. Extended SWIR high performance and high definition colloidal quantum dot imagers[C]//Proc of SPIE, 2020, 11407: 1140707.
[61] World IS[EB/OL]. (2020-10-15)[2020-10-30] https://www.image-sensors.com/image-sensors-europe/event-overview.
[62] Datskos P, Rajic S, Lavrik N. Performance of uncooled microcantilever thermal detectors[C]//Proc of SPIE, 2005, 5721: 136-150.
[63] Calumino. Products[EB/OL]. (2020-10-15)[2020-10-30]www.calumino.com.
[64] Mauser K W, Kim S, Mitrovic S, et al. Resonant thermoelectric nanophotonics [J]. Nat Nanotechnol, 2017, 12(8): 770-775.