[1] Haase M, Schäfer H. Upconverting nanoparticles [J]. Angewandte Chemie International Edition, 2011, 50(26): 5808-5829. doi:  10.1002/anie.201005159
[2] Kozlov D V, Castellano F N. Anti−Stokes delayed fluorescence from metal−organic bichromophores [J]. Chemical Communications, 2004, 46(24): 2860-2861. doi:  10.1039/B412681E
[3] Wang Z, Zhao J, Di Donato M, et al. Increasing the anti−Stokes shift in TTA upconversion with photosensitizers showing red−shifted spin−allowed charge transfer absorption but a non-compromised triplet state energy level [J]. Chemical Communications, 2019, 55(10): 1510-1513. doi:  10.1039/C8CC08159J
[4] Mahammed A, Chen K, Vestfrid J, et al. Phosphorus corrole complexes: from property tuning to applications in photocatalysis and triplet−triplet annihilation upconversion [J]. Chemical Science, 2019, 10(29): 7091-7103. doi:  10.1039/C9SC01463B
[5] Dong Y, Dick B, Zhao J. Twisted bodipy derivative as a heavy−atom−free triplet photosensitizer showing strong absorption of yellow light, intersystem crossing, and a high-energy long−lived triplet state [J]. Organic Letters, 2020, 22(14): 5535-5539. doi:  10.1021/acs.orglett.0c01903
[6] Li T, Liu S, Zhang H, et al. Ultraviolet upconversion luminescence in Y2O3: Yb3+, Tm3+ nanocrystals and its application in photocatalysis [J]. Journal of Materials Science, 2011, 46(9): 2882-2886. doi:  10.1007/s10853-010-5162-4
[7] Xu G, Hu D, Zhao X, et al. Fluorescence upconversion properties of a class of improved pyridinium dyes induced by two−photon absorption [J]. Optics & Laser Technology, 2007, 39(4): 690-695.
[8] Singh-Rachford T N, Castellano F N. Photon upconversion based on sensitized triplet−triplet annihilation [J]. Coordination Chemistry Reviews, 2010, 254(21-22): 2560-2573. doi:  10.1016/j.ccr.2010.01.003
[9] Zhao J, Ji S, Guo H. Triplet−triplet annihilation based upconversion: from triplet sensitizers and triplet acceptors to upconversion quantum yields [J]. RSC Advances, 2011, 1(6): 937-950. doi:  10.1039/c1ra00469g
[10] Baluschev S, Miteva T, Yakutkin V, et al. Up−conversion fluorescence: noncoherent excitation by sunlight [J]. Physical Review Letters, 2006, 97(14): 143903. doi:  10.1103/PhysRevLett.97.143903
[11] Zhou J, Liu Q, Feng W, et al. Upconversion luminescent materials: advances and applications [J]. Chemical Reviews, 2015, 115(1): 395-465. doi:  10.1021/cr400478f
[12] Singh-Rachford T N, Islangulov R R, Castellano F N. Photochemical upconversion approach to broad−band visible light generation [J]. The Journal of Physical Chemistry A, 2008, 112(17): 3906-3910. doi:  10.1021/jp712165h
[13] Hughes D, Barr J. Laser diode pumped solid state lasers [J]. Journal of Physics D: Applied Physics, 1992, 25(4): 563. doi:  10.1088/0022-3727/25/4/001
[14] Mailam M, Yao J, Wang P. LD end−pumped 946 nm/473 nm continuous Nd:YAG/LBO laser [J]. Infrared and Laser Engineering, 2013, 42(11): 2931-2934.
[15] Lin H, Meng X, Xu Y. Implementation of tunable single−frequency optical parameter oscillator based on quasi−phase matching [J]. Advances in Laser and Optoelectronics, 2013, 50(6): 34-39.
[16] Xing T, Wang L, Hu S, et al. Widely tunable and narrow−bandwidth pulsed mid−IR PPMgLN−OPO by self−seeding dual etalon−coupled cavities [J]. Optics Express, 2017, 25(25): 31810-31815. doi:  10.1364/OE.25.031810
[17] Birks J. The quintet state of the pyrene excimer [J]. Physics Letters A, 1967, 24(9): 479-480. doi:  10.1016/j.optlastec.2006.04.003
[18] Liu Xibin, Ding Weiping. Development and application of laser diode pumped DPSSL[J]. Journal of Hunan Institute of Science and Technology (Natural Science Edition), 2005, 18 (3): 49−58. (in Chinese)
[19] Dong Y, Sukhanov A A, Zhao J, et al. Spin−orbit charge−transfer intersystem crossing (SOCT−ISC) in bodipy−phenoxazine dyads: effect of chromophore orientation and conformation restriction on the photophysical properties [J]. The Journal of Physical Chemistry C, 2019, 123(37): 22793-22811. doi:  10.1021/acs.jpcc.9b06170
[20] Wang Z, Zhao J, Barbon A, et al. Radical−enhanced intersystem crossing in new Bodipy derivatives and application for efficient triplet−triplet annihilation upconversion [J]. Journal of the American Chemical Society, 2017, 139(23): 7831-7842. doi:  10.1021/jacs.7b02063
[21] Haefele A, Blumhoff J R, Khnayzer R S, et al. Getting to the (square) root of the problem: how to make noncoherent pumped upconversion linear [J]. The Journal of Physical Chemistry Letters, 2012, 3(3): 299-303. doi:  10.1021/jz300012u
[22] Wu W, Guo H, Wu W, et al. Organic triplet sensitizer library derived from a single chromophore (BODIPY) with long−lived triplet excited state for triplet−triplet annihilation based upconversion [J]. Journal of Organic Chemistry, 2011, 76(17): 7056-7064.
[23] Chen D W, Rose T S. In low noise 10-W cw OPO generation near 3/spl mu/m MgO doped PPLN[C]//Conference on Lasers and Electro-Optics, 2005: 1829-1831.
[24] Razeghi M, Bandyopadhyay N, Bai Y, et al. Recent advances in mid infrared (3-5 μm) quantum cascade lasers [J]. Optical Materials Express, 2013, 3(11): 1872-1884. doi:  10.1364/OME.3.001872
[25] Cramer R, Hillenkamp F, Haglund R F. Infrared matrix−assisted laser desorption and ionization by using a tunable mid−infrared free−electron laser [J]. Journal of the American Society for Mass Spectrometry, 1996, 7(12): 1187-1193. doi:  10.1016/S1044-0305(96)00111-0
[26] Tokita S, Murakami M, Shimizu S, et al. Liquid−cooled 24 W mid−infrared Er: ZBLAN fiber laser [J]. Optics Letters, 2009, 34(20): 3062-3064. doi:  10.1364/OL.34.003062
[27] Henderson-Sapir O, Munch J, Ottaway D J. Mid−infrared fiber lasers at and beyond 3.5 μm using dual−wavelength pumping [J]. Optics Letters, 2014, 39(3): 493-496. doi:  10.1364/OL.39.000493
[28] Novak J, Windsor M. Laser photolysis and spectroscopy: a new technique for the study of rapid reactions in the nanosecond time range [J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1968, 308(1492): 95-110. doi:  10.1098/rspa.1968.0210