[1] Yu Q H, Xiao X S, Chen F S, et al. Co-design method for electro-optical imaging systems [J]. Journal of Infrared and Millimeter Waves, 2019, 38(6): 728-732. doi:  10.11972/j.issn.1001-9014.2019.06.008
[2] Svensson S, Bjorkert S, Kariis H, et al. Countering laser pointer threats to road safety[C]//Conference on Optics for Counter-terrorism and Crime Fighting II, 2006, 6402: 640207.
[3] Jackson S D. Towards high-power mid-infrared emission from a fibre laser [J]. Nature Photonics, 2012, 6(7): 423-431. doi:  10.1038/nphoton.2012.149
[4] Hong L, Hu C, Liu Y, et al. 350-2500 nm supercontinuum white laser enabled by synergic high-harmonic generation and self-phase modulation [J]. PhotoniX, 2023, 4(1): 11. doi:  10.1186/s43074-023-00088-2
[5] 吕跃广, 孙晓泉. 激光对抗原理与应用[M]. 北京: 国防工业出版社, 2015.
[6] 姜玉刚, 刘华松, 王利栓, 等. 卫星激光防护薄膜窗口的设计与制备技术研究[J]. 中国光学, 2019, 12(04): 804-809. doi:  10.3788/co.20191204.0804

Jiang Yugang, Liu Huasong, Wang Lishuan, et al. Design and preparation technology of laser protective film window of satellite [J]. Chinese Optics, 2019, 12(4): 804-809. (in Chinese) doi:  10.3788/co.20191204.0804
[7] 孙希鹏, 李晓东, 杜永超. 空间三结太阳电池用激光防护盖片研究[J]. 电源技术, 2021, 45(09): 1160-1163. doi:  10.3969/j.issn.1002-087X.2021.09.017

Sun Xipeng, Li Xiaodong, Du Yongchao. Research of laser protection coverglass for space triple junction solar cells [J]. Chinese Journal of Power Sources, 2021, 45(9): 1160-1163. (in Chinese) doi:  10.3969/j.issn.1002-087X.2021.09.017
[8] 张岩松, 温万田. 激光防护材料的研究现状及发展趋势[J]. 光电技术应用, 2004(05): 40-43. doi:  10.3969/j.issn.1673-1255.2004.05.011

Zhang Yansong, Wen Wantian. Research and development of laser protective materials [J]. Electro-Optic Technology Application, 2004(5): 40-43. (in Chinese) doi:  10.3969/j.issn.1673-1255.2004.05.011
[9] 国耀宇, 赵亚丽, 梁秀兵, 等. 用于多波段激光防护的聚碳酸酯眼镜片材料研究[J]. 航天医学与医学工程, 2016, 29(05): 353-356. doi:  10.16289/j.cnki.1002-0837.2016.05.008

Guo Yaoyu, Zhao Yali, Liang Xiubing, et al. Study on polycarbonate-based spectacle lens materials for multi-wavelength laser protection [J]. Space Medicine & Medical Engineering, 2016, 29(5): 353-356. (in Chinese) doi:  10.16289/j.cnki.1002-0837.2016.05.008
[10] 郑佳艺, 马壮, 高丽红. 智能化高能激光防护材料新进展[J]. 现代技术陶瓷, 2020, 41(03): 121-133. doi:  10.16253/j.cnki.37-1226/tq.2020.03.001

Zheng Jiayi, Ma Zhuang, Gao Lihong. Development of intelligent anti-high power laser materials [J]. Advanced Ceramics, 2020, 41(3): 121-133. (in Chinese) doi:  10.16253/j.cnki.37-1226/tq.2020.03.001
[11] 吕泽, 方佑, 冯迢, 等. 非线性光限幅材料原理、性能表征及研究进展[J]. 中国光学, 2022, 15(04): 625-639. doi:  10.37188/CO.2021-0195

Lv Ze, Fang You, Feng Tiao, et al. The principle, performance characterization and research progress of nonlinear optical limiting materials [J]. Chinese Optics, 2022, 15(4): 625-639. (in Chinese) doi:  10.37188/CO.2021-0195
[12] 董宁宁, 刘强虎, 王俊. 二维非线性光限幅材料研究进展[J]. 中国激光, 2021, 48(13): 7-21. doi:  10.3788/CJL202148.1300001

Dong Ningning, Liu Qianghu, Wang Jun. Research progress of two-dimensional nonlinear optical limiting material [J]. Chinese Journal of Lasers, 2021, 48(13): 1300001. (in Chinese) doi:  10.3788/CJL202148.1300001
[13] 张盛. V2O5/金刚石膜系多波段激光致盲防护基础研究[D]. 南京航空航天大学, 2019.

Zhang Sheng. Basic research on V2O5/diamond films inmultiband laser blinding protection[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019. (in Chinese)
[14] Morin F J. Oxides which show a metal-to-insulator transition at the neel temperature [J]. Physical Review Letters, 1959, 3(1): 34-36. doi:  10.1103/PhysRevLett.3.34
[15] Baum P, Yang D S, Zewail A H. 4D visualization of transitional structures in phase transformations by electron diffraction [J]. Science, 2007, 318(5851): 788-792. doi:  10.1126/science.1147724
[16] Becker M F, Bruce A B, Walser R M. Femtosecond laser excitation of the semiconductor-metal phase transition in VO2 [J]. Applied Physics Letters, 1994, 65(12): 1507-1507. doi:  10.1063/1.112974
[17] 查子忠, 王骐, 李学春, 等. VO2薄膜对TEACO2激光响应特性的实验研究[J]. 光学学报, 1996(08): 151-154. doi:  10.3321/j.issn:0253-2239.1996.08.030

Zha Zizong, Wang Qi, Li Xuechun, et al. Experemental study of response properties of VO2 films to TEA CO2 laser [J]. Acta Optica Sinica, 1996, 16(8): 151-154. (in Chinese) doi:  10.3321/j.issn:0253-2239.1996.08.030
[18] Cavalleri A, Toth C, Siders C W, et al. Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition [J]. Physical Review Letters, 2001, 87(23): 237401. doi:  10.1103/PhysRevLett.87.237401
[19] Cavalleri A, Dekorsy T, Chong H H W, et al. Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale [J]. Physical Review B, 2004, 70(16): 161102. doi:  10.1103/PhysRevB.70.161102
[20] O'callahan B T, Jones A C, Park J H, et al. Inhomogeneity of the ultrafast insulator-to-metal transition dynamics of VO2 [J]. Nature Communications, 2015, 6: 6849. doi:  10.1038/ncomms7849
[21] Jager M F, Ott C, Kraus P M, et al. Tracking the insulator-to-metal phase transition in VO2 with few-femtosecond extreme UV transient absorption spectroscopy [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(36): 9558-9563. doi:  10.1073/pnas.1707602114
[22] Johnson A S, Perez-Salinas D, Siddiqui K M, et al. Ultrafast X-ray imaging of the light-induced phase transition in VO2 [J]. Nature Physics, 2023, 19: 215-220. doi:  https://doi.org/10.1038/s41567-022-01848-w
[23] Guiton B S, Gu Q, Prieto A L, et al. Single-crystalline vanadium dioxide nanowires with rectangular cross sections [J]. Journal of the American Chemical Society, 2005, 127(2): 498-499. doi:  10.1021/ja045976g
[24] Rana R S, Nolte D D, Chudnovskii F A. Optical bistability from a thermodynamic phase transition in vanadium dioxide [J]. Optics Letters, 1992, 17(19): 1385-1387. doi:  10.1364/OL.17.001385
[25] Wang W, Luo Y, Zhang D, et al. Dynamic optical limiting experiments on vanadium dioxide and vanadium pentoxide thin films irradiated by a laser beam [J]. Applied Optics, 2006, 45(14): 3378-3381. doi:  10.1364/AO.45.003378
[26] Wang Z X, Ji X W, Dong N N, et al. Femtosecond laser-induced phase transition in VO2 films [J]. Optics Express, 2022, 30(26): 47421-47429. doi:  10.1364/OE.477910
[27] Nag J, Haglund R F. Synthesis of vanadium dioxide thin films and nanoparticles [J]. Journal of Physics-condensed Matter, 2008, 20(26): 264016. doi:  10.1088/0953-8984/20/26/264016
[28] 石倩倩, 王江, 程光华. 二氧化钒薄膜的制备技术及应用进展[J]. 光子学报, 2022, 51(10): 340-358. doi:  10.3788/gzxb20225110.1016002

Shi Qianqian, Wang Jiang, Cheng Guanghua. Preparation technology and application of vanadium dioxide thin films [J]. Acta Photonica Sinica, 2022, 51(10): 1016002. (in Chinese) doi:  10.3788/gzxb20225110.1016002
[29] Breckenfeld E, Kim H, Gorzkowski E P, et al. Laser-processing of VO2 thin films synthesized by polymer-assisted-deposition [J]. Applied Surface Science, 2017, 397: 152-158. doi:  10.1016/j.apsusc.2016.11.113
[30] Kim H, Charipar N A, Figueroa J, et al. Control of metal-insulator transition temperature in VO2 thin films grown on RuO2/TiO2 templates by strain modification [J]. AIP Advances, 2019, 9(1): 015302. doi:  10.1063/1.5083848
[31] Koussi E K, Bourquard F, Tite T, et al. Synthesis of vanadium oxides by pulsed laser deposition and rapid thermal annealing [J]. Applied Surface Science, 2020, 521: 146267. doi:  10.1016/j.apsusc.2020.146267
[32] Gurunatha K L, Sathasivam S, Li J W, et al. Combined effect of temperature induced strain and oxygen vacancy on metal-insulator transition of VO2 colloidal particles [J]. Advanced Functional Materials, 2020, 30(49): 2005311. doi:  10.1002/adfm.202005311
[33] Choi, Ahn, Jung, et al. Mid-infrared properties of a VO2 film near the metal-insulator transition [J]. Physical Review B, Condensed Matter, 1996, 54(7): 4621-4628. doi:  10.1103/PhysRevB.54.4621
[34] Chen S H, Ma H, Yi X J, et al. Smart VO2 thin film for protection of sensitive infrared detectors from strong laser radiation [J]. Sensors And Actuators A-physical, 2004, 115(1): 28-31. doi:  10.1016/j.sna.2004.03.018
[35] 陈学荣, 胡军志, 韩文政. 氧化钒薄膜脉冲激光损伤研究[J]. 材料热处理学报, 2007, 100(04): 122-124. doi:  10.3969/j.issn.1009-6264.2007.04.027

Chen Xuerong, Hu Junzhi, Han Wenzheng. Study on pulse laser damage of vanadium oxide thin film [J]. Transactions of Materials and Heat Treatment, 2007, 100(4): 122-124. (in Chinese) doi:  10.3969/j.issn.1009-6264.2007.04.027
[36] Huang Z L, Chen S H, Lv C H, et al. Infrared characteristics of VO2 thin films for smart window and laser protection applications [J]. Applied Physics Letters, 2012, 101(19): 191905. doi:  10.1063/1.4766287
[37] Vilanova-martinez P, Hernandez-velasco J, Landa-canovas A R, et al. Laser heating induced phase changes of VO2 crystals in air monitored by Raman spectroscopy [J]. Journal of Alloys and Compounds, 2016, 661: 122-125. doi:  10.1016/j.jallcom.2015.11.174
[38] 王雅琴, 姚刚, 黄子健, 等. 用于红外激光防护的高开关率VO2薄膜[J]. 物理学报, 2016, 65(05): 268-273. doi:  10.7498/aps.65.057102

Wang Yaqin, Yao Gang, Huang Zijian, et al. Infrared laser protection of multi-wavelength with high optical switching efficiency VO2 film [J]. Acta Physica Sinica, 2016, 65(5): 268-273. (in Chinese) doi:  10.7498/aps.65.057102
[39] 侯典心, 路远, 冯云松, 等. 采用泵浦探测技术研究VO2薄膜相变特性[J]. 发光学报, 2018, 39(02): 140-147. doi:  10.3788/fgxb20183902.0140

Hou Dianxin, Lu Yuan, Feng Yunsong, et al. Study on phase transition properties of VO2 based on pump-probe technique [J]. Chinese Journal of Luminescence, 2018, 39(2): 140-147. (in Chinese) doi:  10.3788/fgxb20183902.0140
[40] 刘志伟, 路远, 侯典心, 等. MBE法制备VO2薄膜及其中红外调制深度测量[J]. 发光学报, 2018, 39(07): 942-947. doi:  10.3788/fgxb20183907.0942

Liu Zhiwei, Lu Yuan, Hou Dianxin, et al. VO2 thin films prepared by MBE and measurements of mid-infrared modulation depth [J]. Chinese Journal of Luminescence, 2018, 39(7): 942-947. (in Chinese) doi:  10.3788/fgxb20183907.0942
[41] 刘志伟, 路远, 冯云松, 等. VO2薄膜受脉冲激光辐照实验及理论计算[J]. 光子学报, 2018, 47(10): 109-115. doi:  10.3788/gzxb20184710.1031001

Liu Zhiwei, Lu Yuan, Feng Yunsong, et al. Experiments and theoretical calculations of VO2 thin film irradiated by pulse laser [J]. Acta Photonica Sinica, 2018, 47(10): 1031001. (in Chinese) doi:  10.3788/gzxb20184710.1031001
[42] 刘志伟, 路远, 侯典心, 等. 激光辐照VO2薄膜温度场分布及透射特性研究[J]. 发光学报, 2018, 39(11): 1604-1612. doi:  10.3788/fgxb20183911.1604

Liu Zhiwei, Lu Yuan, Hou Dianxin, et al. Temperature field distribution and transmittance characteristics of VO2 films irradiated by laser [J]. Chinese Journal of Luminescence, 2018, 39(11): 1604-1612. (in Chinese) doi:  10.3788/fgxb20183911.1604
[43] Zhao L L, Miao L, Liu C Y, et al. Solution-processed VO2-SiO2 composite films with simultaneously enhanced luminous transmittance, solar modulation ability and anti-oxidation pro-perty [J]. Scientific Reports, 2014, 4(1): 7000. doi:  10.1038/srep07000
[44] Howes A, Zhu Z H, Curie D, et al. Optical limiting based on huygens' metasurfaces [J]. Nano Letters, 2020, 20(6): 4638-4644. doi:  10.1021/acs.nanolett.0c01574
[45] Wan C, Zhang Z, Salman J, et al. Ultrathin broadband reflective optical limiter [J]. Laser & Photonics Reviews, 2021, 15(6): 2100001. doi:  https://doi.org/10.1002/lpor.202100001
[46] Guan H, Ren F, Liang S, et al. Ultra-high transmission broadband tunable VO2 optical limiter [J]. Laser & Photonics Reviews, 2023, 17(4): 2200653. doi:  https://doi.org/10.1002/lpor.202200653
[47] 邵晓鹏, 刘飞, 李伟, 等. 计算成像技术及应用最新进展[J]. 激光与光电子学进展, 2020, 57(02): 11-55. doi:  10.3788/LOP57.020001

Shao Xiaopeng, Liu Fei, Li Wei, et al. Latest progress in computational imaging technology and application [J]. Laser & Optoelectronics Progress, 2020, 57(2): 020001. (in Chinese) doi:  10.3788/LOP57.020001
[48] 邵晓鹏, 苏云, 刘金鹏, 等. 计算成像内涵与体系[J]. 光子学报, 2021, 50(05): 9-31. doi:  10.3788/gzxb20215005.0511001

Shao Xiaopeng, Su Yun, Liu Jinpeng, et al. Connotation and system of computational imaging [J]. Acta Photonica Sinica, 2021, 50(5): 0511001. (in Chinese) doi:  10.3788/gzxb20215005.0511001
[49] Ruane G J, Watnik A T, Swartzlander G A. Reducing the risk of laser damage in a focal plane array using linear pupil-plane phase elements [J]. Applied Optics, 2015, 54(2): 210-218. doi:  10.1364/AO.54.000210
[50] Watnik A T, Ruane G J, Swartzlander G A. Incoherent imaging in the presence of unwanted laser radiation: vortex and axicon wavefront coding [J]. Optical Engineering, 2016, 55(12): 123102. doi:  https://doi.org/10.1117/1.OE.55.12.123102
[51] Wirth J H, Watnik A T, Swartzlander G A. Experimental observations of a laser suppression imaging system using pupil-plane phase elements [J]. Applied Optics, 2017, 56(33): 9205-9211. doi:  10.1364/AO.56.009205
[52] Wirth J H, Watnik A T, Swartzlander G A. Computational imaging for reducing peak irradiance on focal planes[C]//Computational Imaging III, 2018, 10669: 106690U.
[53] Wang L, Ye Q, Nie J S, et al. Optimized asymmetrical arcsine phase mask for extending the depth of field [J]. IEEE Photonics Technology Letters, 2018, 30(14): 1309-1312. doi:  10.1109/LPT.2018.2845709
[54] Wang L, Ye Q, Dou X, et al. Anti-cat-eye effect imaging technique based on the light-field imaging technique [J]. Journal of Electronic Imaging, 2019, 28(5): 053020. doi:  https://doi.org/10.1117/1.JEI.28.5.053020
[55] Wang L, Dou X N, Ye Q, et al. Wavefront coded light-field imaging system to achieve substantial retroreflection reduction and anti-laser blinding property [J]. Optik, 2019, 192: 8. doi:  https://doi.org/10.1016/j.ijleo.2019.162947
[56] Li Y, Ye Q, Wang L, et al. Analysis of laser-protection performance of asymmetric-phase-mask wavefront-coding imaging systems [J]. Current Optics and Photonics, 2023, 7(1): 1-14.
[57] Ye Q, Wu Y, Zhang H, et al. Experimental damage thresholds of a laser suppression imaging system using cubic phase plate [J]. Chinese Optics Letters, 2023, 21(4): 041403. doi:  10.3788/COL202321.041403
[58] Ritt G, Eberle B. Electro-optical sensor with spatial and spectral filtering capability [J]. Applied Optics, 2011, 50(21): 3847-3853. doi:  10.1364/AO.50.003847
[59] Ritt G, Eberle B. Automatic suppression of intense mono-chromatic light in electro-optical sensors [J]. Sensors, 2012, 12(10): 14113-14128. doi:  10.3390/s121014113
[60] Schwarz B, Ritt G, Koerber M, et al. Laser-induced damage threshold of camera sensors and micro-optoelectromechanical systems [J]. Optical Engineering, 2017, 56(3): 034108. doi:  https://doi.org/10.1117/1.OE.56.3.034108
[61] Ritt G, Schwarz B, Eberle B. Preventing image information loss of imaging sensors in case of laser dazzle [J]. Optical Engineering, 2019, 58(1): 013109. doi:  https://doi.org/10.1117/1.OE.58.1.013109
[62] Ritt G, Eberle B. Use of complementary wavelength bands for laser dazzle protection [J]. Optical Engineering, 2020, 59(1): 015106. doi:  https://doi.org/10.1117/1.OE.59.1.015106
[63] Ritt G, Koerber M, Forster D, et al. Protection performance evaluation regarding imaging sensors hardened against laser dazzling [J]. Optical Engineering, 2015, 54(5): 053106. doi:  https://doi.org/10.1117/1.OE.54.5.053106
[64] Ritt G, Eberle B. Evaluation of protection measures against laser dazzling for imaging sensors [J]. Optical Engineering, 2017, 56(3): 033108. doi:  https://doi.org/10.1117/1.OE.56.3.033108
[65] Benoist K W, Schleijpen R M A. Modelling of the over-exposed pixel area of CCD cameras caused by laser dazzling[C]//Conference on Technologies for Optical Countermeasures XI and High-Power Lasers-Technology and Systems, 2014, 9251: 92510H.
[66] Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: From error visibility to structural similarity [J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. doi:  10.1109/TIP.2003.819861
[67] Boominathan V, Robinson J T, Waller L, et al. Recent advances in lensless imaging [J]. Optica, 2022, 9(1): 1-16. doi:  10.1364/OPTICA.431361
[68] Liu Youhai, Qin Tianxiang, Wang Yingce, et al. Advances in simple and compact optical imaging techniques [J]. Acta Physica Sinica, 2023, 72(8): 084205. (in Chinese) doi:  10.7498/aps.72.20230092