[1] Schliesser A, Picqué N, Hänsch T W, Mid-infrared frequency combs[J]. Nat Photon, 2012, 6: 440-449.
[2] Coddington I, Newbury N, Swann W. Dual-comb spectroscopy [J]. Optica, 2016, 3: 414-426. doi:  10.1364/OPTICA.3.000414
[3] Crosson E R, Ricci K N, Richman B A, et al. Stable isotope ratios using cavity ring-down spectroscopy: Determination of 13C/12C for carbon dioxide in human breath [J]. Analy Chem, 2002, 74: 2003-2007. doi:  10.1021/ac025511d
[4] Popmintchev T, Chen M C, Popmintchev D, et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers [J]. Science, 2012, 336: 1287-1291. doi:  10.1126/science.1218497
[5] Schubert O, Hohenleutner M, Langer F, et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations [J]. Na Photon, 2014, 8: 119-123. doi:  10.1038/nphoton.2013.349
[6] Hegenbarth R, Steinmann A, Mastel S, et al. High-power femtosecond mid-IR sources for s-SNOM applications [J]. J Opt, 2014, 16: 094003. doi:  10.1088/2040-8978/16/9/094003
[7] Ma J, Qin Z P, Xie G Q, et al. Review of mid-infrared mode-locked laser sources in the 2.0-3.5 μm spectral region [J]. Appl Phys Rev, 2019, 6: 021317. doi:  10.1063/1.5037274
[8] Hu M L, Cai Y. Research progress of ultrafast fiber lasers in mid-infrared band [J]. Chinese Journal of Lasers, 2020, 47(5): 0500009. (in Chinese)
[9] Cao H B, Wang H S, Yuan H, et al. Development of mid-infrared femtosecond light source based on optical parametric amplification (Invited) [J]. Acta Photonica Sinica, 2020, 49(11): 63-80. (in Chinese)
[10] Nie H K, Ning J, Zhang B T, et al. Research progress of infrared optical parametric oscillator in optical superlattice [J]. Chinese Journal of Lasers, 2021, 48(5): 0501008. (in Chinese)
[11] Witte S, Eikema K. Ultrafast optical parametric chirped-pulse amplification [J]. IEEE J Quantum Electron, 2012, 18(1): 296-307. doi:  10.1109/JSTQE.2011.2118370
[12] Liu H, Sun S J, Zheng L, et al. Review of laser‐diode pumped Ti: sapphire laser [J]. Microw Opt Technol Lett, 2021, 63(8): 1-10.
[13] Chu H, Zhao S, Li G, et al. Mode-locked femtosecond polarization-maintaining Yb-doped fiber laser with a figure-nine configuration [J]. Opt Commun, 2021, 482: 126595. doi:  10.1016/j.optcom.2020.126595
[14] Chu Y X, Bi G Y, Fan J, et al. Dual-wavelength, high-repetition-rate, compact femtosecond optical parametric oscillator [J]. IEEE Photon Technol Lett, 2020, 32(19): 1269-1272. doi:  10.1109/LPT.2020.3019453
[15] Ssa B, Am C, My D, et al. Soliton mode-locked Er-doped fiber laser by using Alq3 saturable absorber - ScienceDirect [J]. Optics & Laser Technology, 2020, 123: 105893.
[16] Nikogosyan D N. Nonlinear Optical Crystals: A Complete Survey[M]. Berlin: Springer, 2005.
[17] Konstantin L V. Laser-based Mid-infrared Sources and Applications[M]. New York: John Wiley & Sons, Inc. 2020.
[18] Powers, P E, Tang C L, Cheng L K. High-repetition-rate femtosecond optical parametric oscillator based on RbTiOAsO4 [J]. Opt Lett, 1994, 19(18): 1439-1441. doi:  10.1364/OL.19.001439
[19] Holtom G R, Crowell R A, Cheng L K. Femtosecond mid-infrared optical parametric oscillator based on CsTiOAsO4 [J]. Opt Lett, 1995, 20(18): 1880-1882. doi:  10.1364/OL.20.001880
[20] Mccahon S W, Anson S A, Jang D J, et al. Generation of 3–4 μm femtosecond pulses from a synchronously pumped, critically phase-matched KTiOPO4 optical parametric oscillator [J]. Opt Lett, 1995, 20(22): 2309-2311. doi:  10.1364/OL.20.002309
[21] Spence D E, Wielandy S, Tang C L, et al. High average power, high‐repetition rate femtosecond pulse generation in the 1–5 μm region using an optical parametric oscillator [J]. Appl Phys Lett, 1996, 68(4): 452-454. doi:  10.1063/1.116410
[22] Burr K C, Tang C L, Arbore M A, et al. Broadly tunable mid-infrared femtosecond optical parametric oscillator using all-solid-state-pumped periodically poled lithium niobate [J]. Opt Lett, 1997, 22(19): 1458-1460. doi:  10.1364/OL.22.001458
[23] Lozaalvarez P, Brown C, Reid D T, et al. High-repetition-rate ultrashort-pulse optical parametric oscillator continuously tunable from 2.8 to 6.8 μm [J]. Opt Lett, 1999, 24(21): 1523-1525. doi:  10.1364/OL.24.001523
[24] Tillman K A, Reid D T, Artigas D, et al. Idler-resonant femtosecond tandem optical parametric oscillator tuning from 2.1 μm to 4.2 μm [J]. J Opt Soc Am B, 2004, 21(8): 1551-1558. doi:  10.1364/JOSAB.21.001551
[25] Kumar S C, Esteban M A, Ideguchi T, et al. Few-cycle, broadband, mid-infrared optical parametric oscillator pumped by a 20-fs Ti: sapphire laser [J]. Laser Photon Rev, 2015, 8(5): L86-L91.
[26] Südmeyer T, Innerhofer E, Brunner F, et al. High-power femtosecond fiber-feedback optical parametric oscillator based on periodically poled stoichiometric LiTaO3 [J]. Opt Lett, 2004, 29(10): 1111-3. doi:  10.1364/OL.29.001111
[27] Adler F, Cossel K C, Thorpe M J, et al. Phase-stabilized, 1.5 W frequency comb at 2.8–4.8 μm [J]. Opt Lett, 2009, 34(9): 1330-1332. doi:  10.1364/OL.34.001330
[28] Xu L, James S F, Han J S, Shen L, et al. Yb-fiber amplifier pumped idler-resonant PPLN optical parametric oscillator producing 90 femtosecond pulses with high beam quality [J]. Appl Phy B, 2014, 117(4): 987-993. doi:  10.1007/s00340-014-5918-7
[29] Steinle T, Neubrech F, Steinmann A, et al. Mid-infrared Fourier-transform spectroscopy with a high-brilliance tunable laser source: investigating sample areas down to 5 μm diameter [J]. Opt Express, 2015, 23(9): 11105-11113. doi:  10.1364/OE.23.011105
[30] Jin Y, Cristescu S M, Harren F, et al. Broadly, independent-tunable, dual-wavelength mid-infrared ultrafast optical parametric oscillator [J]. Opt Express, 2015, 23(16): 20418-20427. doi:  10.1364/OE.23.020418
[31] Meng X H, Wang Z H, Tian W L, et al. Watt-level widely tunable femtosecond mid-infrared KTiOAsO4 optical parametric oscillator pumped by a 1.03 μm Yb: KGW laser [J]. Opt Lett, 2018, 43(4): 943-946. doi:  10.1364/OL.43.000943
[32] Popien S, Beutler M, Rimke I, et al. Femtosecond Yb-fiber laser synchronously pumped HgGa2S4 optical parametric oscillator tunable in the 4.4- to 12-μm range [J]. Opt Engineering, 2018, 57(11): 111802.
[33] Marzenell S, Beigang R, Wallenstein R. Synchronously pumped femtosecond optical parametric oscillator based on AgGaSe2 tunable from 2 μm to 8 μm [J]. Appl Phys B, 1999, 69(5): 423-428.
[34] Lippert E, Arisholm G, Fonnum H, et al. Mid-infrared optical parametric oscillator synchronously pumped by an erbium-doped fiber laser [J]. Opt Express, 2010, 18(24): 25379-25388. doi:  10.1364/OE.18.025379
[35] Coluccelli N, Fonnum H, Haakestad M, et al. 250-MHz synchronously pumped optical parametric oscillator at 2.25-2.6 μm and 4.1-4.9 μm [J]. Opt Express, 2012, 20(20): 22042. doi:  10.1364/OE.20.022042
[36] Metzger B, Pollard B, Rimke I, et al. Single-step sub-200fs mid-infrared generation from an optical parametric oscillator synchronously pumped by an erbium fiber laser [J]. Opt Lett, 2016, 41(18): 4383-4388. doi:  10.1364/OL.41.004383
[37] Pei L, Wang S, He P, et al. Dual-channel operation in a synchronously pumped optical parametric oscillator for the generation of broadband mid-infrared coherent light sources [J]. Opt Lett, 2018, 43(9): 2217-2220. doi:  10.1364/OL.43.002217
[38] Liu P, Zhang Z W. Chirped-pulse optical parametric oscillators [J]. Opt Lett, 2018, 43(19): 4735-4738. doi:  10.1364/OL.43.004735
[39] Liu P, Heng J, Zhang Z. Mode-locked chirped-pulse generation from optical parametric oscillators with an aperiodic quasi-phase-matching crystal [J]. Opt Lett, 2020, 45(9): 2568-2571. doi:  10.1364/OL.391175
[40] Leindecker N, Marandi A, Byer R L, et al. Broadband degenerate OPO for mid-infrared frequency comb generation [J]. Opt Express, 2011, 19(7): 6296-6302. doi:  10.1364/OE.19.006296
[41] Leindecker N, Marandi A, Byer R L, et al. Octave-spanning ultrafast OPO with 2.6-6.1 μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser [J]. Opt Express, 2012, 20(7): 7046-7053. doi:  10.1364/OE.20.007046
[42] Lee K F, Mohr C, Jiang J, et al. Midinfrared frequency comb from self-stable degenerate GaAs optical parametric oscillator [J]. Opt Express, 2015, 23(20): 26596-26603. doi:  10.1364/OE.23.026596
[43] Ingold K A, Marandi A, Rudy C W, et al. Fractional-length sync-pumped degenerate optical parametric oscillator for 500-MHz 3-μm mid-infrared frequency comb generation [J]. Opt Lett, 2014, 39(4): 900-903. doi:  10.1364/OL.39.000900
[44] Smolski V O, Vasilyev S, Schunemann P G, et al. Cr: ZnS laser-pumped subharmonic GaAs optical parametric oscillator with the spectrum spanning 3.6–5.6 μm [J]. Opt Lett, 2015, 40(12): 2906-2908. doi:  10.1364/OL.40.002906
[45] Smolski V O, Yang H, Gorelov S D, et al. Coherence properties of a 2.6–7.5 μm frequency comb produced as a subharmonic of a Tm-fiber laser [J]. Opt Lett, 2016, 41(7): 1388-1393. doi:  10.1364/OL.41.001388
[46] Ru Q, Loparo Z E, Zhang X S, et al. Self-referenced octave-wide subharmonic GaP optical parametric oscillator centered at 3 μm and pumped by an Er-fiber laser [J]. Opt Lett, 2017, 42(22): 4756-4759. doi:  10.1364/OL.42.004756
[47] Haakestad M W, Marandi A, Leindecker N, et al. Five‐cycle pulses near λ=3 μm produced in a subharmonic optical parametric oscillator via fine dispersion management [J]. Laser Photon Rev, 2013, 7(6): L93-L97. doi:  10.1002/lpor.201300112
[48] Marandi A, Ingold K A, Jankowski M, et al. Cascaded half-harmonic generation of femtosecond frequency combs in the mid-infrared [J]. Optica, 2016, 3(3): 324-327. doi:  10.1364/OPTICA.3.000324
[49] Sorokin E, Marandl A, Peter G, et al. Efficient half-harmonic generation of three optical-cycle mid-IR frequency comb around 4 μm using OP-GaP [J]. Opt Express, 2018, 26(8): 9963-9971. doi:  10.1364/OE.26.009963
[50] Smolski V, Vasilyev S, Moskalev I, et al. Half-Watt average power femtosecond source spanning 3-8 μm based on subharmonic generation in GaAs [J]. Appl Phys B, 2018, 124(6): 1-7.
[51] Nicolas T, Raman M, Kiss B, et al. Highly stable, 15 W, few-cycle, 65 mrad CEP-noise mid-IR OPCPA for statistical physics [J]. Opt Express, 2018, 26(21): 26907-26915. doi:  10.1364/OE.26.026907
[52] Fu Y, Xue B, Midorikawa K, et al. TW-scale mid-infrared pulses near 3.3 μm directly generated by dual-chirped optical parametric amplification [J]. Appl Phys Lett, 2018, 112(24): 241105. doi:  10.1063/1.5038414
[53] Creeden D J, Zawilski K T, Pomeranz L A, et al. Advances in nonlinear optical crystals for mid-infrared coherent sources [J]. J Opt Soc Am B, 2016, 33(11): D36-D42. doi:  10.1364/JOSAB.33.000D36
[54] Sergei T, Martin H, Jonas H, et al. SESAM-mode locked Ho: YAG thin-disk laser with 40.5 W of average power[C]//CLEO, 2021: SF2M. 3.
[55] Xu L, Chan H Y, Alam S U, et al. Fiber-laser-pumped, high-energy, mid-IR, picosecond optical parametric oscillator with a high-harmonic cavity [J]. Opt Lett, 2015, 40(14): 3288-3291. doi:  10.1364/OL.40.003288
[56] Lamour T P, Reid D T. 650-nJ pulses from a cavity-dumped Yb: fiber-pumped ultrafast optical parametric oscillator [J]. Opt Express, 2011, 19(18): 17557-17562. doi:  10.1364/OE.19.017557
[57] Liu Z, Ke L, Yang F, et al. 305-μJ, 10-kHz, picosecond optical parametric oscillator pumped synchronously and intracavity by a regenerative amplifier [J]. Opt Lett, 2018, 43(3): 539-542. doi:  10.1364/OL.43.000539