[1] Calizo I, Balandin A A, Bao W, et al. Temperature dependence of the Raman spectra of graphene and graphene multilayers [J]. Nano Letters, 2007, 7(9): 2645-2649. doi:  10.1021/nl071033g
[2] Berciaud Stéphane, Han Melinda Y, Mak Kin Fai, et al. Electron and optical phonon temperatures in electrically biased graphene [J]. Physical Review Letters, 2010, 104(22): 227401. doi:  10.1103/PhysRevLett.104.227401
[3] Kim Young Duck, Gao Yuanda, Shiue Ren-Jye, et al. Ultrafast graphene light emitters [J]. Nano Letters, 2018, 18(2): 934-940. doi:  10.1021/acs.nanolett.7b04324
[4] Yang Qi, Shen Jun, Wei Xingzhan, et al. Recent progress on the mechanism and device structure of graphene-based infrared detectors [J]. Infrared and Laser Engineering, 2020, 49(1): 0103003. (in Chinese)
[5] Liu Zhi, Chen Jimin, Li Dongfang, et al. Laser-induced transformation of carbon nanotubes into graphene nanoribbons and their conductive properties [J]. Infrared and Laser Engineering, 2020, 49(9): 20200298. (in Chinese)
[6] Geim A K, Novoselov K S. The rise of graphene [J]. Nature Materials, 2007, 6(3): 183-191.
[7] Bae Myungho, Ong Zhunyong, Estrada David, et al. Imaging, simulation, and electrostatic control of power dissipation in graphene devices [J]. Nano Letters, 2010, 10(12): 4787-4793.
[8] Freitag Marcus, Steiner Mathias, Martin Yves, et al. Energy dissipation in graphene field-effect transistors [J]. Nano Letters, 2009, 9(5): 1883-1888.
[9] Freitag Marcus, Chiu Hsin-Ying, Steiner Mathias, et al. Thermal infrared emission from biased graphene [J]. Nature Nanotechnology, 2010, 5(7): 497-501.
[10] Mahlmeister N H, Luxmoore I J, Poole T, et al. Thermal emission from large area chemical vapor deposited graphene devices [J]. Applied Physics Letters, 2013, 103(13): 131901-131906.
[11] Kim Young Duck, Kim Hakseong, Cho Yujin, et al. Bright visible light emission from graphene [J]. Nature Nanotechnology, 2015, 10(8): 676-681.
[12] Tchon K, Go Ral I. Graphene hot-electron light bulb: Incandescence from hBN-encapsulated graphene in air [J]. 2D Materials, 2018, 5(1): 1910-1915.
[13] Shiue Ren-Jye, Gao Yuanda, Tan Cheng, et al. Thermal radiation control from hot graphene electrons coupled to a photonic crystal nanocavity [J]. Nature Communications, 2019, 10 (1): 109.
[14] Luo Fang, Fan Yansong, Peng Gang, et al. Graphene thermal emitter with enhanced joule heating and localized light emission in air [J]. ACS Photonics, 2019, 6(8): 2117-2125.
[15] Brar Victor W, Sherrott Michellez, Jang Min Seok, et al. Electronic modulation of infrared radiation in graphene plasmonic resonators [J]. Nature Communications, 2015, 6 (1): 7032.
[16] Meyer Jannik C, Geim A K, Katsnelson M I, et al. The structure of suspended graphene sheets [J]. Nature, 2007, 446: 60-63.
[17] Fischbein Michael D, Drndic Marija. Electron beam nanosculpting of suspended graphene sheets [J]. Condensed Matter, 2008, 93(11): 113107.
[18] Alyobi Mona, Barnett Chris, Cobley Richard. Effects of thermal annealing on the properties of mechanically exfoliated suspended and on-substrate few-layer graphene [J]. Crystals, 2017, 7(11): 349. doi:  10.3390/cryst7110349
[19] Li Qiang, Cheng Zengguang, Li Zhongjun. Fabrication of suspended graphene devices and their electronic properties [J]. Chinese Physics B, 2010, 19(9): 97307.
[20] Watanabe Kenji, Taniguchi Takashi, Kanda Hisao. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal [J]. Nature Materials, 2004, 3(6): 404-409.
[21] Cassabois G, Valvin P, Gil B. Hexagonal boron nitride is an indirect bandgap semiconductor [J]. Nature Photonics, 2016, 10(4): 262-266. doi:  10.1038/nphoton.2015.277
[22] Wang L, Meric I, Huang P Y, et al. One-dimensional electrical contact to a two-dimensional material. [J]. Science, 2013, 342: 614-617.
[23] Dean C R, Young A F, Meric I, et al. Boron nitride substrates for high-quality graphene electronics [J]. Nature Nanotechnology, 2010, 5(10): 722-726.
[24] Gao Xin, Zheng Liming, Luo Fang, et al. Integrated wafer-scale ultra-flat graphene by gradient surface energy modulation [J]. Nature Communications, 2022, 13(1): 5410.
[25] Fukamachi Satoru, Solís-fernández Pablo, Kawahara Kenji, et al. Large-area synthesis and transfer of multilayer hexagonal boron nitride for enhanced graphene device arrays [J]. Nature Electronics, 2023, 6(2): 126-136.
[26] Li Xiaoli, Qiao Xiaofen, Han Wenpeng, et al. Layer number identification of intrinsic and defective multilayered graphenes up to 100 layers by the raman mode intensity from substrates [J]. Nanoscale, 2015, 7(17): 8135-8141.
[27] Zhang T Y, Wang H W, Xia X X, et al. A monolithically sculpted van der waals nano-opto-electro-mechanical coupler [J]. Light Sci Appl, 2022, 11(1): 76-85.