[1] Bennett C H, Brassard G. Quantum cryptography: public key distribution and coin tossing [C]//Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, 1984, 560: 175–179.
[2] Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography [J]. Review of Modern Physics, 2002, 74: 145.
[3] Scarani V, Bechmann-Pasquinucci H, Cerf N J, et al. The security of practical quantum key distribution [J]. Review of Modern Physics, 2009, 81(3): 1301.
[4] Guo G C. Research status and future of quantum information technology [J]. Sci Sin Inform, 2020, 50(9): 121-132. (in Chinese) doi:  10.1360/SSI-2020-0112
[5] Wu Zhongbo, Yi Jianqiang. Cooperative communication relay selection method for UVA formation support networks [J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2): 187-194. (in Chinese)
[6] Nauerth S, Moll F, Rau M, et al. Air to ground quantum key distribution [C]//Proceedings of SPIE, 2012, 8518: 85180D.
[7] Bourgoin J P, Higgins B L, Gibov N, et al. Free-space quantum key distribution to a moving receiver [J]. Optics Express, 2015, 23(26): 33437-33447. doi:  10.1364/OE.23.033437
[8] Pugh C J, Kaiser S, Bourgoin J P, et al. Airborne demonstration of a quantum key distribution receiver payload [J]. Quantum Science and Technology, 2017, 2(2): 024009. doi:  10.1088/2058-9565/aa701f
[9] Lo H K, Curty M, Qi B. Measurement device independent quantum key distribution [J]. Physical Review Letters, 2012, 108(13): 130503. doi:  10.1103/PhysRevLett.108.130503
[10] Huang J Z, Yin Z Q, Chen W, et al. A survey on device-independent quantum communications [J]. China Communications, 2013(2): 1-10.
[11] Yin H L, Chen T Y, Yu Z W, et al. Measurement device independent quantum key distribution over 404 km optical fiber [J]. Physical Review Letters, 2016, 117(19): 190501. doi:  10.1103/PhysRevLett.117.190501
[12] Ma X F, Razav M. Alternative schemes for measurement-device-independent quantum key distribution [J]. Physical Review A, 2012, 86(6): 3818-3821.
[13] Cao Y, Li Y H, Yang K X, et al. Long-distance free-space measurement-device-independent quantum key distribution [J]. Physical Review Letter, 2020, 125(26): 260503-260509. doi:  10.1103/PhysRevLett.125.260503
[14] Ke Z J, Wang Y T, Yu S, et al. Detection and quantification of entanglement with measurement-device-independent and universal entanglement witness [J]. Chin Phys B, 2020, 8(14): 080301.
[15] Wang C, Yin Z Q, Wang S, et al. Measurement-device-independent quantum key distribution robust against environmental disturbances [J]. Optica, 2017, 9(4): 1016-1023.
[16] Rubenok A, Slater J A, Chan P, et al. Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks [J]. Physical Review Letters, 2013, 9(27): 130501.
[17] Liu H J. Current situation and trend of USA communication relay [J]. Airborne Missile, 2017(2): 39-44. (in Chinese)
[18] Guan Z F. Current status and trend of US military UA communication system [J]. Communications Technology, 2014, 47(10): 1109-1113. (in Chinese)
[19] Ma X F, Qi B, Zhao Y, et al. Practical decoy state for quantum key distribution [J]. Physical Review A, 2005, 72(1): 012326-012341. doi:  10.1103/PhysRevA.72.012326
[20] Yu Z W, Zhou Y H, Wang X B. Three-intensity decoy state method for device independent quantum key distribution [J]. Physical Review A, 2013, 88(1): 019901. doi:  10.1103/PhysRevA.88.019901
[21] Dong C, Zhao S H, Zhao W H, et al . Analysis of measurement device independent quantum key distribution with an asymmetric channel transmittance efficiency [J]. Acta Physical Sinica, 2014, 63(3): 030302. (in Chinese) doi:  10.7498/aps.63.030302
[22] Yang R, Li Y X, Meng W, et al. Channel characteristics of continuous variable quantum communication system on aviation platform [J]. Acta Optica Sinica, 2018, 38(9): 0927002. (in Chinese) doi:  10.3788/AOS201838.0927002
[23] Han L Q, Wang Q, Katsunori S. Performance of free space optical communication over gamma-gamma atmosphere turbulence [J]. Infrared and Laser Engineering, 2011, 40(7): 1318-1322. (in Chinese)
[24] Liu T, Zhu C, Sun C Y, et al. Influences of different weather conditions on performance of free-space quantum communication system [J]. Acta Optica Sinica, 2020, 14(2): 0227001. (in Chinese)
[25] Cao Minghua, Hu Qiu, Wang Huiqin, et al. Atmospheric optical communications channel estimation employing superimposed training sequence under sand-dust weather conditions [J]. Infrared and Laser Engineering, 2019, S2(48): S218002. (in Chinese)
[26] Kim I I, McArthur B, Korevaar E J. Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications [C]//Proceedings of SPIE, 2001, 4214: 26-37.
[27] Khaleel A I, Tawfeeq S K. Key rate estimation of measurement-device-independent quantum key distribution protocol in satellite-earth and intersatellite links [J]. International Journal of Quantum Information, 2018, 16(3): 1850027. doi:  10.1142/S0219749918500272
[28] Zhang Guangyu, Yu Siyuan, Ma Jing, et al. Influence of background light on quantum bit error rate in satellite-to-ground quantum key distribution [J]. Opto-Electronic Engineering, 2018, 34(2): 126-129. (in Chinese)
[29] 章鹏. 实用化量子密钥分发系统的性能研究[D]北京. 北京邮电大学2019

Zhang Peng. Research on the performance of practical quantum key distribution system [D]. Beijing: Beijing University of Posts and Telecommunications, 2019. (in Chinese)
[30] 宋婷婷. 量子密钥分发协议的有限密钥安全性分析[D]北京.北京邮电大学2014

Song Tingting. Finite key security analysis of quantum key distribution protocols [D]. Beijing: Beijing University of Posts and Telecommunications, 2014. (in Chinese)
[31] Xu F H, Xu H, Lo H K. Protocol choice and parameter optimization in decoy-state measurement-device- independent quantum key distribution [J]. Physical Review A, 2014, 89(5): 3846-3855.
[32] Wang Qin, Chen Yipeng. Application and research of machine learning in quantum secure communication [J]. Journal of Nanjing University of Posts and Telecommunications, 2020, 40(5): 141-157. (in Chinese)