[1] Chellappan K V, Erden E, Urey H. Laser-based displays: a review [J]. Applied Optics, 2010, 49(25): F79-F98. doi:  10.1364/AO.49.000F79
[2] Bai Z, Chen H, Gao X, et al. Highly compact nanosecond laser for space debris tracking [J]. Optical Materials, 2019, 98: 109470. doi:  10.1016/j.optmat.2019.109470
[3] 陈晖, 白振旭, 王建才, 等. 百瓦级PCFA/LBO倍频绿光皮秒激光器[J]. 红外与激光工程, 2021, 50(11): 20200522. doi:  10.3788/IRLA20200522

Chen Hui, Bai Zhenxu, Wang Jiancai, et al. Hundred-watt green picosecond laser based on LBO frequency-doubled photonic crystal fiber amplifier [J]. Infrared and Laser Engineering, 2021, 50(11): 20200522. (in Chinese) doi:  10.3788/IRLA20200522
[4] 孙思佳, 田文龙, 杨云霄, 等. 可见光稀土离子掺杂固体激光器(特邀)[J]. 光电技术应用, 2023, 38(1): 11-20. doi:  10.3969/j.issn.1673-1255.2023.01.003

Sun Sijia, Tian Wenlong, Yang Yunxiao, et al. Visible rare-earth doped solid-state lasers (invited) [J]. Electro-Optic Technology Application, 2023, 38(1): 11-20. (in Chinese) doi:  10.3969/j.issn.1673-1255.2023.01.003
[5] Yu J, Luo M, Lv Z, et al. Recent advances in optical and optoelectronic data storage based on luminescent nanomaterials [J]. Nanoscale, 2020, 12(46): 23391-23423. doi:  10.1039/D0NR06719A
[6] Lin X, Wang P, Zhang Y, et al. Theoretical and experimental aspects of laser cutting using direct diode laser source based on multi-wavelength multiplexing [J]. Optics Laser Technology, 2019, 114: 66-71. doi:  10.1016/j.optlastec.2019.01.022
[7] 丁宇, 姜锋, 郑荣山, 等. 美国高能激光武器发展概况(特邀)[J]. 光电技术应用, 2021, 36(6): 1-9. doi:  10.3969/j.issn.1673-1255.2021.06.002

Ding Yu, Jiang Feng, Zheng Rongshan, et al. Overview of high energy laser weapon development in USA (invited) [J]. Electro-Optic Technology Application, 2021, 36(6): 1-9. (in Chinese) doi:  10.3969/j.issn.1673-1255.2021.06.002
[8] Khalkhal E, Rezaei-tavirani M, Zali Mr, et al. The evaluation of laser application in surgery: A review article [J]. Journal of Lasers in Medical Sciences, 2018, 10(Suppl1): S104-S111. doi:  10.15171/jlms.2019.S18
[9] 顾勇刚, 牛健, 杨坚, 徐红星. 激光在医疗领域中的应用[J]. 中国光学(中英文), 2023, 16(2): 283-295. doi:  10.37188/CO.2023-0017

Gu Yonggang, Niu Jian, Yang Jian, et al. Application of laser in the medical field [J]. Chinese Optics, 2023, 16(2): 283-295. (in Chinese) doi:  10.37188/CO.2023-0017
[10] 龙明亮, 邓华荣, 张海峰, 吴志波, 张忠萍, 陈檬. 脉冲串皮秒激光技术及其空间碎片激光测距[J]. 光电技术应用, 2022, 28(6): 45-52. doi:  10.3969/j.issn.1673-1255.2022.06.010

Long Mingliang, Deng Huarong, Zhang Haifeng, et al. Pulse burst picosecond laser technique and application in space debris ranging [J]. Electro-Optic Technology Application, 2022, 28(6): 45-52. (in Chinese) doi:  10.3969/j.issn.1673-1255.2022.06.010
[11] Sijan A. Development of military lasers for optical countermeasures in the mid-IR[C]//Proceedings of SPIE, 2009, 7483: 748304.
[12] 李森森, 闫秀生. 激光对抗系统中的中红外激光源及其关键技术[J]. 光电技术应用, 2018, 33(5): 19-23. doi:  10.3969/j.issn.1673-1255.2018.05.005

Li S, Yan X. Research on mid-infrared laser source in laser countermeasure system and key technology [J]. Electro-Optic Technology Application, 2018, 33(5): 19-23. (in Chinese) doi:  10.3969/j.issn.1673-1255.2018.05.005
[13] 李春光, 党敬民, 陈晨, et al. 使用量子级联激光器和多通吸收光谱技术用于CO探测 [J]. 光谱学与光谱分析, 2016, 36(05): 1308-1312. doi:  10.3964/j.issn.1000-0593(2016)05-1308-05

Li Chunguang, Dang Jingmin, Chen Chen, et al. Multi-Pass absorption spectroscopy for CO detection using a quantum cascaded laser [J]. Spectroscopy and Spectral Analysis, 2016, 36(5): 1308-1312. (in Chinese) doi:  10.3964/j.issn.1000-0593(2016)05-1308-05
[14] 白振旭, 高嘉, 赵臣, 等. 基于非线性频率变换的长波红外激光器研究进展[J]. 光学学报, 2023, 43(3): 0314001. doi:  10.3788/AOS221126

Bai Zhenxu, Gao Jia, Zhao Chen, et al. Research progress of long-wave infrared lasers based on nonlinear frequency conversion [J]. Acta Optica Sinica, 2023, 43(3): 0314001. (in Chinese) doi:  10.3788/AOS221126
[15] 王超臣, 刘瑞科, 王廷予, 等. 红外半导体激光器应用[J]. 激光杂志, 2020, 41(8): 1-10. doi:  10.14016/j.cnki.jgzz.2020.08.001

Wang C C, Liu R K, Wang T Y, et al. Applications of infrared semiconductor laser [J]. Laser Journal, 2020, 41(8): 1-10. (in Chinese) doi:  10.14016/j.cnki.jgzz.2020.08.001
[16] Gebbie H A, Harding W R, Hilsum C, et al. Atmospheric transmission in the 1 to 14 μ region [J]. Proceedings of the Royal Society A: Mathematical and Physical Sciences, 1951, 206(1084): 87-107. doi:  https://doi.org/10.1098/rspa.1951.0058
[17] 刘雨晴, 孙洪波. 非线性激光制造的进展与应用(特邀)[J]. 红外与激光工程, 2022, 51(1): 20220005. doi:  10.3788/IRLA20220005

Liu Yuqing, Sun Hongbo. Progress and application of nonlinear laser manufacturing (invited) [J]. Infrared and Laser Engineering, 2022, 51(1): 20220005. (in Chinese) doi:  10.3788/IRLA20220005
[18] Tunna L, Kearns A, O'neill W, et al. Micromachining of copper using Nd: YAG laser radiation at 1 064, 532, and 355 nm wavelengths [J]. Optics & Laser Technology, 2001, 33(3): 135-143. doi:  https://doi.org/10.1016/S0030-3992(00)00126-2
[19] Huo X, Qi Y, Zhang Y, et al. Research development of 589 nm laser for sodium laser guide stars [J]. Optics and Lasers in Engineering, 2020, 134: 106207. doi:  10.1016/j.optlaseng.2020.106207
[20] 尤崴, 杨学宗, 陈卫标, 冯衍. 589 nm激光钠导星技术研究综述(特邀)[J]. 光电技术应用, 2021, 36(5): 1-14, 32. doi:  10.3969/j.issn.1673-1255.2021.05.002

You Wei, Yang Xuezong, Chen Weibiao, et al. Review of 589 nm sodium laser guide stars (invited) [J]. Electro-Optic Technology Application, 2021, 36(5): 1-14,32. (in Chinese) doi:  10.3969/j.issn.1673-1255.2021.05.002
[21] Rauter P, Capasso F. Multi‐wavelength quantum cascade laser arrays [J]. Laser & Photonics Reviews, 2015, 9(5): 452-477. doi:  https://doi.org/10.1002/lpor.201500095
[22] 张晓琳, 朱立, 黄波, 等. 多波长激光对糖尿病视网膜病变患者神经纤维层的影响和疗效[J]. 中国激光医学杂志, 2020, 29(6): 336-341. doi:  10.13480/j.issn1003-9430.2020.0336

Zhang Xiaolin, Zhu Li, Huang Bo, et al. Effect of multi-wavelength laser on nerve fiber layer in patients with DR and possible mechanisms [J]. Chin J Laser Med Surg, 2020, 29(6): 336-341. (in Chinese) doi:  10.13480/j.issn1003-9430.2020.0336
[23] 刘晨凯, 胡明勇, 李昭阳, 等. 一种多波长激光雷达光学系统设计[J]. 量子电子学报, 2021, 38(6): 806-814. doi:  10.3969/j.issn.1007-5461.2021.06.008

Liu Chenkai, Hu Mingyong, Li Zhaoyang, et al. Design of a multi-wavelength lidar optical system [J]. Chinese Journal of Quantum Electronics, 2021, 38(6): 806-814. (in Chinese) doi:  10.3969/j.issn.1007-5461.2021.06.008
[24] 白振旭, 陈晖, 张展鹏, 王坤, 丁洁, 齐瑶瑶, 颜秉政, 李森森, 闫秀生, 王雨雷, 吕志伟. 百瓦级1.2/1.5 μm双波长金刚石拉曼激光器(特邀)[J]. 红外与激光工程, 2021, 50(12): 20210685. doi:  10.3788/IRLA20210685

Bai Zhenxu, Chen Hui, Zhang Zhanpeng, et al. Hundred-watt dual-wavelength diamond Raman laser at 1.2 /1.5 μm (invited) [J]. Infrared and Laser Engineering, 2021, 50(12): 20210685. (in Chinese) doi:  10.3788/IRLA20210685
[25] Marshall J, Stewart G, Whitenett G. Design of a tunable L-band multi-wavelength laser system for application to gas spectroscopy [J]. Measurement Science and Technology, 2006, 17(5): 1023. doi:  10.1088/0957-0233/17/5/S15
[26] 白振旭, 陈晖, 丁洁, 齐瑶瑶, 王雨雷, 吕志伟. 基于空间光腔的高功率布里渊频率梳[J]. 中国激光, 2022, 49(4): 0415001. doi:  10.3788/CJL202249.0415001

Bai Zhenxu, Chen Hui, Ding Jie, et al. High-power brillouin frequency comb based on free-space optical cavity [J]. Chinese Journal of Lasers, 2022, 49(4): 0415001. (in Chinese) doi:  10.3788/CJL202249.0415001
[27] Photogrammetry vs. LIDAR: what sensor to choose for a given application[EB/OL]. (2023-01-27)[2023-07-06]. https://wingtra.com/drone-photogrammetry-vs-lidar/.
[28] Photonics Applied: Ddfense: IR countermeasures aim for safer [EB/OL]. (2021-08-01) [2023-07-06]. https://www.laserfocus-world.com/lasers-sources/article/16548073/photonics-applied-defense-ir-countermeasures-aim-for-safer-flights.
[29] High speed laser communication is now available in space[EB/OL]. (2016-02-06)[2023-07-06]. https://incompliancemag.com/high-speed-laser-communication-in-space/.
[30] Zapping away: medical laser systems are winning big in the modern hospital[EB/OL]. (2017-08-08)[2023-07-06]. https://blog.technavio.org/blog/medical-laser-technologies-market.
[31] Laser-scanning microscopy method achieves rapid 3D imaging[EB/OL]. (2022-03-21)[2023-07-06]. https://www.photonics.com/Articles/Laser-Scanning_Microscopy_Method_Achieves_Rapid/a67871.
[32] 陈蕾 温晓霞 张含, 等. 多波长氪离子激光治疗糖尿病视网膜病变[J]. 中华眼底病杂志, 2001, 17 (3): 178-180. doi:  10.3760/j.issn:1005-1015.2001.03.003

Chen L, Wen X, Zhang H, et al. Different wavelength krypton lasers in treatment of diabetic retinopathy [J]. Chin J Ocul Fundus Dis, 2001, 17(3): 178-180. (in Chinese) doi:  10.3760/j.issn:1005-1015.2001.03.003
[33] 王振. 窄线宽多波长光纤激光器及其应用研究 [D]. 长春: 长春理工大学, 2018.

Wang Zhen. Study on multi-wavelength fiber lasers with narrow line width and their applications[D]. Changchun: Changchun University of Science and Technology, 2018. (in Chinese)
[34] 邓宇翔. 多倍布里渊频移间隔的多波长掺饵光纤激光器 [D]: 南京邮电大学, 2018.

Deng Yuxiang. Multiwavelength Brillouin erbium-doped fiber laser with wavelength spacing of multiple Brillouin shift[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2018. (in Chinese)
[35] Wang X L, Dong J, Wang X J, et al. Multi-wavelength Yb: YAG/Nd3+: YVO4 continuous-wave microchip Raman laser [J]. Opt Lett, 2016, 41(15): 3559-3562. doi:  10.1364/OL.41.003559
[36] Sun S, Wei Q, Li B, et al. The YMgB5O10 crystal preparation and attractive multi-wavelength emission characteristics of doping Nd3+ ions [J]. Journal of Materials Chemistry C, 2021, 9(6): 1945-1957. doi:  10.1039/D0TC05372D
[37] 陈龙辉, 谢芳, 郭晓蕾, 郭哲灿. 可调谐单纵模多波长光纤激光器的研究[J]. 激光技术, 2021, 45(6): 681-685. doi:  10.7510/jgjs.issn.1001-3806.2021.06.001

Chen Longhui, Xie Fang, Guo Xiaolei, et al. Research on tunable single-longitudinal multi-wavelength fiber laser [J]. Laser Technology, 2021, 45(6): 681-685. (in Chinese) doi:  10.7510/jgjs.issn.1001-3806.2021.06.001
[38] Liu Hao, Shu Rong, Hong Guanglie, et al. Continuous-wave modulation differential absorption lidar system for CO2 measurement [J]. Acta Phys Sin, 2014, 63(10): 104214. doi:  10.7498/aps.63.104214
[39] 施逸乐. 彩色计算彩虹全息实用技术的研究 [D]: 苏州大学, 2013.

Shi Yile. Research on practical approach of color computer-generated rainbow holography[D]. Suzhou: Soochow University, 2013. (in Chinese)
[40] 康鹏, 孙羽, 王进, 等. 基于高精细度光腔锁频激光的分子吸收光谱测量[J]. 物理学报, 2018, 67(10): 104206. doi:  10.7498/aps.67.20172532

Kang Peng, Sun Yu, Wang Jin, et al. Measurement of molecular absorption spectrum with a laser locked on a high-finesse cavity [J]. Acta Phys Sin, 2018, 67(10): 104206. (in Chinese) doi:  10.7498/aps.67.20172532
[41] 钟凯, 张献中, 徐德刚, 姚建铨. 全固态双波长激光器研究进展(特邀)[J]. 光电技术应用, 2022, 37(4): 13-26, 78. doi:  10.3969/j.issn.1673-1255.2022.04.003

Zhong Kai, Zhang Xianzhong, Xu Degang, et al. Progress of all-solid-state dual-wavelength lasers (invited) [J]. Electro-Optic Technology Application, 2022, 37(4): 13-26, 78. (in Chinese) doi:  10.3969/j.issn.1673-1255.2022.04.003
[42] Xia J, Lv Y, Liu H, et al. Diode-pumped Pr3+: LiYF4 visible dual-wavelength laser [J]. Optics Communications, 2015, 334: 160-163. doi:  https://doi.org/10.1016/j.optcom.2014.08.032
[43] 王永恒, 赵长明, 蔡子韬, 等. LD泵浦1061 nm/1064 nm双波长Nd: YAG微片激光器 [J]. 中国激光, 2020, 47 (03): 28-35. doi:  DOI:10.3788/CJL202047.0301002

Wang Yongheng, Zhao Changming, Cai Zitao, et al. LD pumped 1 061 nm/1 064 nm dual-wavelength Nd: YAG micro-chip laser [J]. Chinese Journal of Lasers, 2020, 47(3): 0301002. (in Chinese) doi:  DOI:10.3788/CJL202047.0301002
[44] Chen Lijuan, Wang Zhengping, Zhuang Shidong, et al. Dual-wavelength Nd: YAG crystal laser at 1 074 and 1 112 nm [J]. Opt Lett, 2011, 36(13): 2554. doi:  10.1364/OL.36.002554
[45] 贾富强, 薛庆华, 郑权, 等. 全固态LBO腔内倍频556 nm黄光激光器 [J]. 中国激光, 2005, 32 (8): 1017-1021. doi:  10.3321/j.issn:0258-7025.2005.08.001

Jia Fuqiang, Xue Qinghua, Zheng Quan, et al. All-solid-state 556-nm yellow laser by LBO intracavity-frequency-doubling [J]. Chinese Journal of Lasers, 2005, 32(8): 1017-1021. (in Chinese) doi:  10.3321/j.issn:0258-7025.2005.08.001
[46] Zhang X, Zhang S, Wang C, et al. Orthogonally polarized dual-wavelength single-longitudinal-mode Tm, Ho: LLF laser [J]. Optics Express, 2013, 21(19): 22699-22704. doi:  10.1364/OE.21.022699
[47] 崔璨, 王月, 王雨雷, 等. 非线性光学激光合束技术研究进展[J]. 强激光与粒子束, 2023, 35: 041006. doi:  10.11884/HPLPB202335.220359

Cui Can, Wang Yue, Wang Yulei, et al. Research progress on nonlinear optics laser beam combining technology [J]. High Power Laser and Particle Beams, 2023, 35: 041006. (in Chinese) doi:  10.11884/HPLPB202335.220359
[48] 白振旭, 王雨雷, 吕志伟, 等. 基于布里渊放大串行激光组束研究进展[J]. 激光与光电子学进展, 2015, 52(11): 110004. doi:  10.3788/lop52.110004

Bai Zhenxu, Wang Yulei, Lv Zhiwei, et al. Research progress of serial laser beam combination based on stimulated Brillouin amplification [J]. Laser & Optoelectronics Progress, 2015, 52(11): 110004. (in Chinese) doi:  10.3788/lop52.110004
[49] 周朴, 粟荣涛, 马阎星, 等. 激光相干合成的研究进展: 2011—2020[J]. 中国激光, 2021, 48(4): 0401003. doi:  10.3788/CJL202148.0401003

Zhou Pu, Su Rongtao, Ma Yanxing, et al. Review of coherent laser beam combining research progress in the past decade [J]. Chinese Journal of Lasers, 2021, 48(4): 0401003. (in Chinese) doi:  10.3788/CJL202148.0401003
[50] 刘小溪, 王学锋, 王军龙, 等. 光纤激光器外腔型光谱组束研究[J]. 中国激光, 2018, 45(8): 0801009. doi:  10.3788/CJL201845.0801009

Liu Xiaoxi, Wang Xuefeng, Wang Junlong, et al. External cavity spectral beam combining of fiber lasers [J]. Chinese Journal of Lasers, 2018, 45(8): 0801009. (in Chinese) doi:  10.3788/CJL201845.0801009
[51] 张大勇, 郝金坪, 朱辰, 等. 光纤激光器光谱合束技术综述[J]. 激光与红外, 2016, 46(5): 517-521. doi:  10.3969/j.issn.1001-5078.2016.05.001

Zhang D, Hao J, Zhu C, et al. Review on spectral beam combining of fiber lasers [J]. Laser & Infrared, 2016, 46(5): 517-521. (in Chinese) doi:  10.3969/j.issn.1001-5078.2016.05.001
[52] Zhang Y, Hu M, Xu M, et al. Experimental investigation on the Y-type cavity tunable dual-wavelength laser based on neodymium-doped vanadate crystals [J]. Optics Commu-nications, 2021, 495: 127089. doi:  10.1016/j.optcom.2021.127089
[53] Fan T Y. Laser beam combining for high-power, high-radiance sources [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(3): 567-577. doi:  10.1109/JSTQE.2005.850241
[54] Sang Mei, Xue Ting, Yu Jian, et al. The characteristics of optical parametrical oscillator in periodically poled KTiOPO [J]. Acta Photonica Sinica, 2003, 32(11): 1286-1290. (in Chinese) doi:  10.1016/j.compbiomed.2006.11.014
[55] Borsutzky A, Brünger R, Huang C, et al. Harmonic and sum-frequency generation of pulsed laser radiation in BBO, LBO, and KD*P [J]. Applied Physics B, 1991, 52(1): 55-62. doi:  10.1007/BF00405687
[56] 谭天亚, 邵建达, 范正修, et al. LBO晶体上1064 nm, 532 nm二倍频增透膜的制备和性能 [J]. 光学学报, 2009, 29(7): 2022-2025. doi:  10.3788/AOS20092907.2022

Tan Tianya, Shao Jianda, Fan Zhengxiu, et al. Study on preparation and performances of 1 064 nm, 532 nm frequency-doubled antireflection coating for LBO [J]. Acta Optica Sinica, 2009, 29(7): 2022-2025. (in Chinese) doi:  10.3788/AOS20092907.2022
[57] 单排, 王祖建, 苏榕冰, et al. 准相位匹配深紫外非线性光学晶体研究进展 [J]. 量子电子学报, 2021, 38 (02): 180-184. doi:  10.3969/j.issn.1007-5461.2021.02.006

Shan Pai, Wang Zujian, Su Rongbing, et al. Research progress of quasi-phase matching deep-ultraviolet nonlinear optical crystals [J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 180-184. (in Chinese) doi:  10.3969/j.issn.1007-5461.2021.02.006
[58] 吴志心. 基于受激拉曼散射的新型双波长激光研究 [D]: 山东大学, 2019.

Wu Zhixin. Study on a novel dual-wavelength laser based on stimulated Raman scattering[D]. Jinan: Shandong University, 2019. (in Chinese)
[59] 王晓斌, 康文运, 宋小全. 基于拉曼晶体的多波长激光技术研究进展 [J]. 激光与红外, 2016, 46 (08): 922-928. doi:  10.3969/j.issn.1001-5078.2016.08.003

Wang Xiaobin, Kang Wenyun, Song Xiaoquan. Research progress of multi-wavelength laser technology based on Raman crystal [J]. Laser & Infrared, 2016, 46(8): 922-928. (in Chinese) doi:  10.3969/j.issn.1001-5078.2016.08.003
[60] Bai Z, Yuan H, Liu Z, et al. Stimulated Brillouin scattering materials, experimental design and applications: A review [J]. Optical Materials, 2018, 75: 626-645. doi:  10.1016/j.optmat.2017.10.035
[61] 程梦瑶, 段延敏, 孙瑛璐, et al. 钒酸盐晶体拉曼及其混频可见光波段激光研究进展 [J]. 激光与光电子学进展, 2020, 57 (7): 071611. doi:  10.3788/LOP57.071611

Cheng Mengyao, Duan Yanmin, Sun Yinglu, et al. Research progress of raman and frequency mixing for visible lasers based on vanadate crystals [J]. Laser & Optoelectronics Progress, 2020, 57(7): 071611. (in Chinese) doi:  10.3788/LOP57.071611
[62] Chen H, Bai Z, Cai Y, et al. Order controllable enhanced stimulated Brillouin scattering utilizing cascaded diamond Raman conversion [J]. Applied Physics Letters, 2023, 122(9): 092209. doi:  10.1063/5.0137542
[63] Chen H, Bai Z, Yang X, et al. Enhanced stimulated Brillouin scattering utilizing Raman conversion in diamond [J]. Applied Physics Letters, 2022, 120(18): 181103. doi:  10.1063/5.0087092
[64] Lin G, Diallo S, Saleh K, et al. Cascaded Brillouin lasing in monolithic barium fluoride whispering gallery mode resonators [J]. Applied Physics Letters, 2014, 105(23): 231103. doi:  10.1063/1.4903516
[65] Supradeepa V R, Feng Y, Nicholson J W. Raman fiber lasers [J]. Journal of Optics, 2017, 19(2): 023001. doi:  10.1088/2040-8986/19/2/023001
[66] 白振旭, 陈晖, 李宇琪, 等. 基于金刚石拉曼转换的光束亮度增强研究进展[J]. 红外与激光工程, 2021, 50(1): 20200098. doi:  10.3788/IRLA20200098

Bai Zhenxu, Chen Hui, Li Yuqi, et al. Development of beam brightness enhancement based on diamond Raman conversion [J]. Infrared and Laser Engineering, 2021, 50(1): 20200098. (in Chinese) doi:  10.3788/IRLA20200098
[67] Brauch U, Röcker C, Graf T, et al. High-power, high-brightness solid-state laser architectures and their characteristics [J]. Applied Physics B, 2022, 128(3): 58. doi:  10.1007/s00340-021-07736-0
[68] Gao Q, Lu Z, Zhu C, et al. Mechanism of beam cleanup by stimulated Brillouin scattering in multimode fibers [J]. Applied Physics Express, 2015, 8(5): 052501. doi:  10.7567/APEX.8.052501
[69] Smith R G. Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering [J]. Applied Optics, 1972, 11(11): 2489-2494. doi:  10.1364/AO.11.002489
[70] Sirleto L, Ferrara M A. Fiber amplifiers and fiber lasers based on stimulated Raman scattering: a review [J]. Micromachines, 2020, 11(3): 247. doi:  10.3390/mi11030247
[71] 白振旭, 郝 鑫, 郑 浩, 等. 高功率自由空间拉曼放大技术研究进展(特邀) [J]. 红外与激光工程, 2023, 52(8): 20230337. doi:  10.3788/IRLA20230337

Bai Zhenxu, Hao Xin, Zheng Hao, et al. Research progress on high-power free-space Raman amplification technology (invited) [J]. Infrared and Laser Engineering, 2023, 52(8): 20230337. (in Chinese) doi:  10.3788/IRLA20230337
[72] 李牧野, 杨学宗, 孙玉祥, 等. 单频连续波金刚石拉曼激光器研究进展(特邀)[J]. 红外与激光工程, 2022, 51(06): 20210970. doi:  10.3788/IRLA20210970

Li Muye, Yang Xuezong, Sun Yuxiang, et al. Single-frequency continuous-wave diamond Raman laser (invited) [J]. Infrared and Laser Engineering, 2022, 51(6): 20210970. (in Chinese) doi:  10.3788/IRLA20210970
[73] Sheng Q, Li R, Lee A J, et al. A single-frequency intracavity Raman laser [J]. Optics Express, 2019, 27(6): 8540-8553. doi:  10.1364/OE.27.008540
[74] Yang X, Bai Z, Chen D, et al. Widely-tunable single-frequency diamond Raman laser [J]. Optics Express, 2021, 29(18): 29449-29457. doi:  10.1364/OE.435023
[75] Lux O, Sarang S, Kitzler O, et al. Intrinsically stable high-power single longitudinal mode laser using spatial hole burning free gain [J]. Optica, 2016, 3(8): 876-881. doi:  10.1364/OPTICA.3.000876
[76] 白振旭. 高功率金刚石拉曼激光器亮度增强技术及金刚石布里渊激光器研究[D]. 哈尔滨工业大学, 2018.

Bai Zhenxu. Laser technology and diamond brillouin raman laser brightness enhancement research on high power diamond[D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese)
[77] Nakazato M, Nagai T, Sakai T, et al. Tropospheric ozone differential-absorption lidar using stimulated Raman scattering in carbon dioxide [J]. Appl Opt, 2007, 46(12): 2269-2279. doi:  10.1364/AO.46.002269
[78] Everall N J, Partanen J P, Barr J, et al. Threshold measurements of stimulated Raman scattering in gases using picosecond KrF laser pulses [J]. Optics Communications, 1987, 64(4): 393-397. doi:  10.1016/0030-4018(87)90258-6
[79] Sentrayan K, Major L, Bryant H L, et al. Laser wavelength, pressure and temperature dependence on the stimulated raman scattering gain in H2 [J]. Spectroscopy Letters, 1992, 25: 627-637. doi:  https://doi.org/10.1080/00387019208020697
[80] Tzortzakis S, Tsaknakis G, Papayannis A, et al. Investigation of the spatial profile of stimulated Raman scattering beams in D2 and H2 gases using a pulsed Nd: YAG laser at 266 nm [J]. Applied Physics B, 2004, 79(1): 71-75. doi:  10.1007/s00340-004-1508-4
[81] Pine A S. Self, N2, O2, H2, Ar, and He broadening in the ν3 band Q branch of CH4 [J]. The Journal of Chemical Physics, 1992, 97(2): 773-785. doi:  10.1063/1.463943
[82] Colles M J. Efficient stimulated Raman scattering from picosecond pulses [J]. Optics Communications, 1969, 1(4): 169-172. doi:  10.1016/0030-4018(69)90057-1
[83] Adrain R S, Arthurs E G, Sibbett W. Tunable picosecond transient stimulated Raman scattering in ethanol [J]. Optics Communications, 1975, 15(2): 290-292. doi:  10.1016/0030-4018(75)90305-3
[84] Du Q, Superfine R, Freysz E, et al. Vibrational spectroscopy of water at the vapor/water interface [J]. Phys Rev Lett, 1993, 70(15): 2313. doi:  10.1103/PhysRevLett.70.2313
[85] Serpengüzel A, Chen G, Chang R K. Stimulated Raman scattering of aqueous droplets containing ions: concentration and size determination [J]. Particulate Science and Technology, 1990, 8(3-4): 179-189. doi:  10.1080/02726359008906565
[86] Kitzler O, Mckay A, Mildren R P. Continuous-wave wave-length conversion for high-power applications using an external cavity diamond Raman laser [J]. Opt Lett, 2012, 37(14): 2790-2792. doi:  10.1364/OL.37.002790
[87] Sabella A, Piper J A, Mildren R P. Diamond Raman laser with continuously tunable output from 3.38 to 3.80 μm. [J]. Opt Lett, 2014, 39(13): 4037-4040. doi:  10.1364/OL.39.004037
[88] Williams R J, Nold J, Strecker M, et al. Efficient Raman frequency conversion of high-power fiber lasers in diamond [J]. Laser Photonics Rev, 2015, 9(4): 405-411. doi:  10.1002/lpor.201500032
[89] Murray J T, Powell R C, Peyghambarian N, et al. Generation of 1.5-μm radiation through intracavity solid-state Raman shifting in Ba(NO3)2 nonlinear crystals [J]. Opt Lett, 1995, 20(9): 1017. doi:  10.1364/OL.20.001017
[90] Takei N, Suzuki S, Kannari F. 20-Hz operation of an eye-safe cascade Raman laser with a Ba(NO3)2 crystal [J]. Applied Physics B Lasers Optics Communications, 2002, 74: 521-527. doi:  https://doi.org/10.1007/s003400200832
[91] Chen X, Zhang X, Wang Q, et al. Highly efficient diode-pumped actively Q-switched Nd: YAG-SrWO4 intracavity Raman laser [J]. Opt Lett, 2008, 33(7): 705-707. doi:  10.1364/OL.33.000705
[92] Ding S, Zhang X, Wang Q, et al. Theoretical and experimental research on the multi-frequency Raman converter with KGd(WO4)2 crystal [J]. Opt Express, 2005, 13(25): 10120-10128. doi:  10.1364/OPEX.13.010120
[93] Fan Y X, Liu Y, Duan Y H, et al. High-efficiency eye-safe intracavity Raman laser at 1531 nm with SrWO4 crystal [J]. Applied Physics B, 2008, 93(2-3): 327. doi:  10.1007/s00340-008-3165-5
[94] Kuleshov N V, Lagatsky A A, Podlipensky A V, et al. Pulsed laser operation of Yb-doped KY(WO4)2 and KGd(WO4)2 [J]. Opt Lett, 1997, 22(17): 1317-1319. doi:  10.1364/OL.22.001317
[95] Matsuse M, Deguchi T, Ohtsuka H, et al. Effect of laser pulsewidth on the generation of multi-color laser emission by stimulated Raman scattering and four-wave Raman mixing in a KGd(WO4)2 crystal [J]. Optics Communications, 2003, 223(4): 411-416. doi:  https://doi.org/10.1016/S0030-4018(03)01675-4
[96] Kaminskii A A, Ueda K, Eichler H J, et al. Tetragonal vanadates YVO4 and GdVO4 materials for Raman lasers [J]. Optics Communications, 2001, 94(1-3): 201-206. doi:  https://doi.org/10.1016/S0030-4018(01)01274-3
[97] SU K W, Chang Y T, Chen Y F. Power scale-up of the diode-pumped actively Q-switched Nd: YVO4 Raman laser with an undoped YVO4 crystal as a Raman shifter [J]. Applied Physics B, 2007, 88(1): 47-50. doi:  10.1007/s00340-007-2648-0
[98] 徐洋. 多波长皮秒受激拉曼激光的研究 [D]: 北京工业大学, 2014.

Xu Yang. The research of multi-wavelenth picosecond stimu-lated Raman laser[D]. Beijing: Beijing University of Technology, 2014. (in Chinese)
[99] Shen H, Wang Q, Zhang X, et al. 1st-Stokes and 2nd-Stokes dual-wavelength operation and mode-locking modulation in diode-side-pumped Nd:YAG/BaWO4 Raman laser [J]. Optics Express, 2012, 20(16): 17823-17832. doi:  10.1364/OE.20.017823
[100] Huang H, Shen D, He J. Simultaneous pulse generation of orthogonally polarized dual-wavelength at 1 091 and 1 095 nm by coupled stimulated Raman scattering [J]. Optics Express, 2012, 20(25): 27838-27846. doi:  10.1364/OE.20.027838
[101] Zhang H, Chen X, Wang Q, et al. Dual-wavelength actively Q-switched diode-end-pumped ceramic Nd:YAG/BaWO4 Raman laser operating at 1 240 and 1 376 nm [J]. Laser Physics Letters, 2014, 11(10): 105806. doi:  10.1088/1612-2011/11/10/105806
[102] Huang Y J, Chen Y F, Chen W D, et al. Dual-wavelength eye-safe Nd: YAP Raman laser [J]. Opt Lett, 2015, 40(15): 3560-3563. doi:  10.1364/OL.40.003560
[103] Sun Y, Lee C, Zhu Z, et al. Dual-polarization balanced Yb: GAB crystal for an intracavity simultaneous orthogonally polarized multi-wavelength KGW Raman laser [J]. Opt Mater Express, 2016, 6(11): 3550-3557. doi:  10.1364/OME.6.003550
[104] Tu Z H, Dai S B, Chen M T, et al. High-peak-power eye-safe orthogonally-polarized dual-wavelength Nd: YLF/KGW Ra- man laser [J]. Optics Express, 2020, 28(6): 8802-8810. doi:  10.1364/OE.390919
[105] Duan Y, Sun Y, Zhu H, et al. YVO4 cascaded Raman laser for five-visible-wavelength switchable emission [J]. Opt Lett, 2020, 45(9): 2564-2567. doi:  10.1364/OL.392566
[106] Fan L, Wang X, Zhao X, et al. First-Stokes and second-Stokes multi-wavelength continuous-wave operation in Nd: YVO4/BaWO4 Raman laser under in-band pumping [J]. Chinese Optics Letters, 2020, 18(11): 111401. doi:  10.3788/COL202018.111401
[107] Williams R J, Kitzler O, Bai Z, et al. High power diamond Raman lasers [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 1602214. doi:  10.1109/JSTQE.2018.2827658
[108] Chen H, Bai Z, Cai Y, et al. Order controllable enhanced stimulated Brillouin scattering utilizing cascaded diamond Raman conversion [J]. Applied Physics Letters, 2023, 122(9): 092202. doi:  https://doi.org/10.1063/5.0137542
[109] 白振旭, 杨学宗, 陈晖, 金舵, 丁洁, 齐瑶瑶, 李森森, 闫秀生, 王雨雷, 吕志伟. 高功率金刚石激光技术研究进展(特邀)[J]. 红外与激光工程, 2020, 49(12): 20201076. doi:  10.3788/IRLA20201076

Bai Zhenxu, Yang Xuezong, Chen Hui, et al. Research progress of high-power diamond laser technology (invited) [J]. Infrared and Laser Engineering, 2020, 49(12): 20201076. (in Chinese) doi:  10.3788/IRLA20201076
[110] Bai Z, Williams RJ, Kitzler O, et al. 302 W quasi-continuous cascaded diamond Raman laser at 1.5 microns with large brightness enhancement [J]. Optics Express, 2018, 26(16): 19797-19803. doi:  https://doi.org/10.1364/OE.26.019797
[111] Mckay A, Liu H, Kitzler O, et al. An efficient 14.5 W diamond Raman laser at high pulse repetition rate with first (1240 nm) and second (1485 nm) Stokes output [J]. Laser Physics Letters, 2013, 10(10): 105801. doi:  10.1088/1612-2011/10/10/105801
[112] Bai Z, Williams R J. Kitzler O, et al. Diamond Brillouin laser in the visible [J]. APL Photonics, 2020, 5(3): 031301. doi:  10.1063/1.5134907
[113] Dashkevich V I, Orlovich V A. Ring solid-state Raman laser at 1 538 nm [J]. Laser Physics Letters, 2021, 8(9): 661-667. doi:  10.1002/lapl.201110049
[114] Kitzler O, Lin J, Pask H M. et al. Single-longitudinal-mode ring diamond Raman laser [J]. Opt Lett, 2017, 42(7): 1229-1232. doi:  https://doi.org/10.1364/OL.42.001229
[115] 侯军燕, 舒仕江, 汪岳峰, et al. 激光二极管双端抽运高功率高光束质量Z型折叠腔Nd: YVO4激光器 [J]. 光学学报, 2010, 30 (8): 2299-2305. doi:  10.3788/AOS20103008.2299

Hou Junyan, Shu Shijiang, Wang Yuefeng, et al. High power high beam quality LD dual-end-pumped Z folded resonator Nd:YVO4 laser [J]. Acta Optica Sinica, 2010, 30(8): 2299-2305. (in Chinese) doi:  10.3788/AOS20103008.2299
[116] Sun Y, Li M, Kitzler O, et al. Stable high-efficiency con-tinuous-wave diamond Raman laser at 1 178 nm [J]. Laser Physics Letters, 2022, 19(12): 125001. doi:  10.1088/1612-202X/ac9ce2
[117] Li M, Sun Y, Jiang H, et al. Secondary Raman and Brillouin mode suppression in two-and three-mirror-cavity diamond Raman lasers [J]. Optics Express, 2023, 31(5): 8622-8631. doi:  10.1364/OE.483482
[118] Warrier A M, Lin J, Pask H M, et al. Highly efficient picosecond diamond Raman laser at 1240 and 1485 nm [J]. Optics Express, 2014, 22(3): 3325-3333. doi:  10.1364/OE.22.003325
[119] Li M, Kitzler O, Spence D J. Investigating single-longitudinal-mode operation of a continuous wave second Stokes diamond Raman ring laser [J]. Optics Express, 2020, 28(2): 1738-1744. doi:  10.1364/OE.380644
[120] Li M, Kitzler O, Mildren R P, et al. Modelling and characterisation of continuous wave resonantly pumped diamond Raman lasers [J]. Optics Express, 2021, 29(12): 18427-18436. doi:  10.1364/OE.426067
[121] Frank M, Smetanin S N, Jelinek M, et al. Multiwavelength, picosecond, synchronously pumped, Pb(MoO4)0.2(WO4)0.8 Raman laser oscillating at 12 wavelengths in a range of 1 128-1 360 nm [J]. Opt Lett, 2021, 46(20): 5272-5275. doi:  10.1364/OL.441592
[122] Granados E, Pask H M, Esposito E, et al. Multi-wavelength, all-solid-state, continuous wave mode locked picosecond Raman laser [J]. Optics Express, 2010, 18(5): 5289-5294. doi:  10.1364/OE.18.005289
[123] Parrotta D C, Kemp A J, Dawson M D, et al. Tunable continuous-wave diamond Raman laser [J]. Optics Express, 2011, 19(24): 24165-24170. doi:  10.1364/OE.19.024165
[124] Cai Y, Gao F, Chen H, et al. Continuous-wave diamond laser with a tunable wavelength in orange-red wavelength band [J]. Optics Communications, 2023, 528: 128985. doi:  10.1016/j.optcom.2022.128985
[125] Casula R, Penttinen J P, Guina M, et al. Cascaded crystalline Raman lasers for extended wavelength coverage: continuous-wave, third-Stokes operation [J]. Optica, 2018, 5(11): 1406-1413. doi:  https://doi.org/10.1364/OPTICA.5.001406
[126] Wang X, Wang X, Zheng Z, et al. 1164.4 nm and 1174.7 nm dual-wavelength Nd:GdVO4/Cr4+:YAG/YVO4 passively Q-switched Raman microchip laser [J]. Appl Opt, 2018, 57(12): 3198-3204. doi:  10.1364/AO.57.003198