[1] Smith D R, Pendry J B, Wiltshir M C K. Metamaterials and negative refractive index [J]. Science, 2004, 305(5685): 788-792. doi:  10.1126/science.1096796
[2] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction [J]. Science, 2001, 292(5514): 77-79. doi:  10.1126/science.1058847
[3] Pendry J B. Negative refraction makes a perfect lens [J]. Physical Review Letters, 2000, 85(18): 3966-3969. doi:  10.1103/PhysRevLett.85.3966
[4] Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber [J]. Physical Review Letters, 2008, 100(20): 207402. doi:  10.1103/PhysRevLett.100.207402
[5] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies [J]. Science, 2006, 314(5801): 977-980. doi:  10.1126/science.1133628
[6] Liu N, Mesch M, Weiss T, et al. Infrared perfect absorber and its application as plasmonic sensor [J]. Nano Letters, 2010, 10(7): 2342-2348. doi:  10.1021/nl9041033
[7] Cattoni A, Ghenuche P, Haghiri-Gosnet A M, et al. λ3/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography [J]. Nano Letters, 2011, 11(9): 3557-3563. doi:  10.1021/nl201004c
[8] Zhang K, Luo W, Huang S, et al. Wavelength-selective infrared detector fabricated by integrating LiTaO3 with a metamaterial perfect absorber [J]. Sensors and Actuators A: Physical, 2020, 313: 112186. doi:  10.1016/j.sna.2020.112186
[9] Gu P, Wang J, Müller-Buschbaum P, et al. Infrared Thin film detectors based on thermoresponsive microgels with linear shrinkage behavior and gold nanorods [J]. ACS Applied Materials & Interfaces, 2020, 12(30): 34180-34189.
[10] Wehner J G A, Musca C A, Sewell R H, et al. Mercury cadmium telluride resonant-cavity-enhanced photoconductive infrared detectors [J]. Applied Physics Letters, 2005, 87(21): 211104. doi:  10.1063/1.2133914
[11] Zhang Y, Luo H, Shen W. Study on the quantum efficiency of resonant cavity enhanced GaAs far-infrared detectors [J]. Journal of Applied Physics, 2002, 91(9): 5538-5544. doi:  10.1063/1.1465513
[12] Goldflam M D, Kadlec E A, Olson B V, et al. Enhanced infrared detectors using resonant structures combined with thin type-II superlattice absorbers [J]. Applied Physics Letters, 2016, 109(25): 251103. doi:  10.1063/1.4972844
[13] Wang S, Yoon N, Kamboj A, et al. Ultra-thin enhanced-absorption long-wave infrared detectors [J]. Applied Physics Letters, 2018, 112(9): 091104. doi:  10.1063/1.5017704
[14] Chu Z, Zhou J, Dai X, et al. Circular polarization discrimination enhanced by anisotropic media [J]. Advanced Optical Materials, 2020, 8(9): 1901800. doi:  10.1002/adom.201901800
[15] Xia Y, Wang J, Zhang Y, et al. Transmission-type optical modulator based on graphene plasmonic resonator integrated with off-resonant Au structure [J]. Advanced Optical Materials, 2020, 8(18): 2000264. doi:  10.1002/adom.202000264
[16] Levine B F, Bethea C G, Hasnain G, et al. High sensitivity low dark current 10 μm GaAs quantum well infrared photodetectors[J]. Appl Phys Lett, 1990, 56: 851.
[17] Vurgaftman I, Canedy C L, Jackson E M, et al. Analysis and performance of type-II superlattice infrared photodetectors[J]. Opt Eng, 2011, 50: 061007.
[18] Martyniuk P, Rogalski A. Quantum-dot infrared photodetectors: Status and outlook [J]. Progress in Quantum Electronics, 2008, 32: 89-120. doi:  10.1016/j.pquantelec.2008.07.001
[19] Rogalski A. HgCdTe infrared detector material: history, status and outlook [J]. Reports on Progress in Physics, 2005, 68(10): 2267-2336. doi:  10.1088/0034-4885/68/10/R01
[20] Piper J R, Fan S. Total Absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance [J]. ACS Photonics, 2014, 1(4): 347-353. doi:  10.1021/ph400090p
[21] Liu X, Starr T, Starr A F, et al. Infrared spatial and frequency selective metamaterial with near-unity absorbance [J]. Physical Review Letters, 2010, 104(20): 207403. doi:  10.1103/PhysRevLett.104.207403
[22] Hu X, Li M, Ye Z, et al. Design of midinfrared photodetectors enhanced by resonant cavities with subwavelength metallic gratings [J]. Applied Physics Letters, 2008, 93(24): 241108. doi:  10.1063/1.3052893
[23] Zhang C, Chang H, Zhao F, et al. Design principle of Au grating couplers for quantum-well infrared photodetectors [J]. Optics Letters, 2013, 38(20): 4037. doi:  10.1364/OL.38.004037
[24] Chang H, Zhang C, Zhao F, et al. Antireflection coatings on Au plasmonic gratings for infrared photodetection [J]. Plasmonics, 2015, 10(6): 1519-1524. doi:  10.1007/s11468-015-9961-y
[25] Yu Z, Veronis G, Fan S, et al. Design of midinfrared photodetectors enhanced by surface plasmons on grating structures [J]. Applied Physics Letters, 2006, 89(15): 151116. doi:  10.1063/1.2360896
[26] Wang J, Chen A, Zhang Y, et al. Manipulating bandwidth of light absorption at critical coupling: an example of graphene integrated with dielectric photonic structure [J]. Physical Review B, 2019, 100(7): 075407. doi:  10.1103/PhysRevB.100.075407