[1] Li Qiang, Guo Chenguang, Ding Guangshuo, et al. Research on milling subsurface layer damages of DD5 Ni-based single crystal superalloy [J]. China Mechanical Engineering, 2020, 31(21): 2638-2645. (in Chinese) doi:  10.3969/j.issn.1004-132X.2020.21.015
[2] Bian Hongyou, Di Tengda, Wang Shijie, et al. Microstructure and wear properties of laser deposition repaired DZ125 alloy [J]. Rare Metal Materials and Engineering, 2020, 49(6): 2039-2045. (in Chinese)
[3] Zhou Zhipeng, Huang Lan, Shang Yijing, et al. Causes analysis on cracks in nickel-based single crystal superalloy fabricated by laser powder deposition additive manufacturing [J]. Materials & Design, 2018, 160: 1238-1249. doi:  https://doi.org/10.1016/j.matdes.2018.10.042
[4] Xue Jun, Feng Jiantao, Ma Changzheng, et al. Influence of laser shock peening on microstructure and oxidation resistance of laser additive manufactured TC4 titanium alloy [J]. Chinese Optics, 2018, 11(2): 198-205. (in Chinese) doi:  10.3788/co.20181102.0198
[5] Li Yanzhou, Shi Yan. Microstructure and corrosion resistance of AlCrFeCoNiCu high-entropy coating by laser deposition on an aluminum alloy [J]. Chinese Optics, 2019, 12(2): 344-354. (in Chinese) doi:  10.3788/co.20191202.0344
[6] Yang Guangfeng, Gao Feng, Cui Jing, et al. Effect of scanning speed on microstructure and properties of 300M steel cladding C276 coating [J]. Infrared and Laser Engineering, 2023, 52(1): 20220328. (in Chinese) doi:  10.3788/IRLA20220328
[7] Li Yanzhou, Shi Yan. Microstructure and process optimization of AlCrFeCoNiCu high-entropy alloy by laser deposition [J]. Optics and Precision Engineering, 2019, 27(4): 795-806. (in Chinese) doi:  10.3788/OPE.20192704.0795
[8] Fu Chongliang, Fu Jinbao, Ding Yalin, et al. Porosity control of Inconel 718 in high deposition-rate laser metal deposition [J]. Optics and Precision Engineering, 2015, 23(11): 3005-3011. (in Chinese) doi:  10.3788/OPE.20152311.3005
[9] Chen Hao, Lu Yuanyuan, Luo Deng, et al. Epitaxial laser deposition of single crystal Ni-based superalloys: repair of complex geometry [J]. Journal of Materials Processing Technology, 2020, 285(1-2): 116782. doi:  10.1016/j.jmatprotec.2020.116782
[10] Gäumann M, Henry S, Cléton F, et al. Epitaxial laser metal forming: analysis of microstructure formation [J]. Materials Science & Engineering A, 1999, 271(1): 232-241. doi:  https://doi.org/10.1016/S0921-5093(99)00202-6
[11] Gäumann M, Bezençon P, Canalis W, et al. Single-crystal laser deposition of superalloys: processing-microstructure maps [J]. Acta Materialia, 2001, 49(6): 1051-1062. doi:  10.1016/S1359-6454(00)00367-0
[12] Kaierle S, Overmeyer L, Alfred I, et al. Single-crystal turbine blade tip repair by laser cladding and remelting [J]. CIRP Journal of Manufacturing Science and Technology, 2017, 19: 196-199. doi:  10.1016/j.cirpj.2017.04.001
[13] Rong Peng, Guo Jiachen. Effect of substrate orientation on formation of heterocrystals in laser cladding zone [J]. Chinese Journal of Lasers, 2021, 48(6): 0602110. (in Chinese) doi:  10.3788/CJL202148.0602110
[14] Nie Jianwen, Chen Chaoyue, Liu Longtao, et al. Effect of substrate cooling on the epitaxial growth of Ni-based single-crystal superalloy fabricated by direct energy deposition [J]. Journal of Materials Science & Technology, 2021, 62(3): 148-161. doi:  https://doi.org/10.1016/j.jmst.2020.05.041
[15] Liang Yaojian, Li Jia, Li An, et al. Experimental optimization of laser additive manufacturing process of single-crystal nickel-base superalloys by a statistical experiment design method [J]. Journal of Alloys and Compounds, 2017, 697: 174-181. doi:  10.1016/j.jallcom.2016.12.109
[16] Liu Xiaoxin, Cheng Xu, Wang Huaming, et al. Influence of processing conditions on formation of stray grains in DD5 single crystal superalloys by laser melting multi-traced deposition [J]. Chinese Journal of Lasers, 2017, 44(6): 0602009. (in Chinese) doi:  10.3788/CJL201744.0602009
[17] Liu Zhaoyang, Qi Huan. Effects of substrate crystallographic orientations on crystal growth and microstructure formation in laser powder deposition of nickel-based superalloy [J]. Acta Materialia, 2015, 87: 248-258. doi:  10.1016/j.actamat.2014.12.046
[18] Bian Hongyou, Zhai Quanxing, Qu Shen, et al. Experimental study on laser deposition repair GH738 alloy [J]. Infrared and Laser Engineering, 2018, 47(7): 0706002. (in Chinese) doi:  10.3788/IRLA201847.0706002
[19] Wang Tao, Zhu Yanyan, Zhang Shuquan, et al. Grain morphology evolution behavior of titanium alloy components during laser melting deposition additive manufacturing [J]. Journal of Alloys and Compounds, 2015, 632: 505-513. doi:  10.1016/j.jallcom.2015.01.256
[20] Bian Hongyou, Zhai Xingyue, Wang Shijie, et al. Microstructure and properties of two-stage aging heat treated single multilayer DZ125 after laser deposition repair [J]. Rare Metal Materials and Engineering, 2020, 49(9): 3122-3128. (in Chinese)
[21] Wang Guowei, Liang Jingjing, Yang Yanhong, et al. Effects of scanning speed on microstructure in laser surface-melted single crystal superalloy and theoretical analysis [J]. Journal of Materials Science & Technology, 2018, 34(8): 1315-1324. doi:  https://doi.org/10.1016/j.jmst.2017.11.027
[22] Ci Shiwei, Liang Jingjing, Li Jinguo, et al. Microstructure and stress-rupture property of DD32 nickel-based single crystal superalloy fabricated by additive manufacturing [J]. Journal of Alloys and Compounds, 2020, 854: 157180. doi:  https://doi.org/10.1016/j.jallcom.2020.157180
[23] Yu Huan, Li Lian, Zhou Zhenzhen, et al. Phase transformation and microstructure formation of K424 superalloy with different cooling rate [J]. Journal of Aeronautical Materials, 2014, 34(3): 1-7. (in Chinese) doi:  10.11868/j.issn.1005-5053.2014.3.001
[24] Li Qiuge, Lin Xin, Wang Xinghua, et al. Microstructure of laser solid forming K465 superalloy [J]. Rare Metal Materials and Engineering, 2016, 45(5): 1215-1219. (in Chinese) doi:  CNKI:SUN:COSE.0.2016-05-026
[25] Xing Pengyu, Zhang Yiwen, Jia Jian. MC carbides in FGH4098 alloy with different Ta contents [J]. Transactions of Materials and Heat Treatment, 2018, 39(2): 88-92. (in Chinese) doi:  http://dx.doi.org/10.13289/j.issn.1009-6264.2017-0414
[26] Cao X, Rivaux B, Jahazi M, et al. Effect of pre- and post-weld heat treatment on metallurgical and tensile properties of Inconel 718 alloy butt joints welded using 4 kW Nd: YAG laser [J]. Journal of Materials Science, 2009, 44(17): 4557-4571. doi:  10.1007/s10853-009-3691-5