[1] McCarthy A, Collins R J, Krichel N J, et al. Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting [J]. Applied Optics, 2009, 48(32): 6241-6251. doi:  10.1364/AO.48.006241
[2] Li Z H. Multi-beam photon-counting laser imaging [D]. Shanghai: East China Normal University, 2017. (in Chinese)
[3] Ge Peng, Guo Jingjing, Chen Cong, et al. Photon-counting 3D imaging based on Geiger-mode APD array [J]. Infrared and Laser Engineering, 2020, 49(3): 0305007. (in Chinese) doi:  0305007
[4] Du B C, Pang C K, Wu D, et al. High-speed photon-counting laser ranging for broad range of distances [J]. Scientific Reports, 2018, 8(4198): 10.1038/s41598-018-22675-1. doi:  https://doi.org/10.1038/s41598-018-22675-1
[5] Mccarthy A, Krichel N, Gemmell N, et al. Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection [J]. Optics Express, 2013, 21(7): 8904-8915. doi:  10.1364/OE.21.008904
[6] Shangguan M J, Xia H Y, Wang C, et al. All-fiber upconversion high spectral resolution wind [J]. Optics Express, 2016, 24(17): 19322-19336. doi:  https://doi.org/10.1364/OE.24.019322
[7] Clifton W E, Steeleb B, Nelsonb G, et al. Medium altitude airborne Geiger-mode mapping lidar system[C]//Laser Radar Technology and Applications XX; and Atmospheric Propagation XII. International Society for Optics and Photonics, 2015: 946506.
[8] Degnan J J. Scanning, multibeam, single photon lidars for rapid, large scale, high resolution, topographic and bathymetric mapping [J]. Remote Sensing, 2016, 8(11): 958. doi:  10.3390/rs8110958
[9] Marino R M, Davis W R. Jigsaw: A foliage-penetrating 3D imaging laser radar system [J]. Lincoln Laboratory Journal, 2005, 15(1): 23-36.
[10] Dumanis D. Airborne Optical Systems Testbed(AOSTB)[R]. US: MIT Lincoln Laboratory, 2016.
[11] Albota M A, Gurjar R, Mangognia A, et al. Contributed Review: Advanced three-dimensional laser radar imaging with the airborne optical systems testbed [J]. Review of Scientific Instruments, 2018, 89(10): 101502. doi:  10.1063/1.5017855
[12] Bahr T, Smith P. Airborne Geiger-mode lidar for large-scale, high-resolution wide-area mapping[C]//GI Forum, 2016, 1: 85-93.
[13] Yu A W, Krainak M A, Harding D J, et al. A 16-beam non-scanning swath mapping laser altimeter instrument[C]//Proc SPIE, 2013, 8599: 85990P.
[14] Li M. Research on technologies of photon counting Lidar based on fiber optics [D]. Shanghai: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 2017. (in Chinese)
[15] Li Z P, Huang X, Cao Y, et al. Single-photon computational 3D imaging at 45 km [J]. arXiv, 2019: 1904.10341.
[16] Li Z P, Huang X, Jiang P Y, et al. Super-resolution single-photon imaging at 8.2 kilometers [J]. Optics Express, 2020, 28(3): 4076-4087. doi:  10.1364/OE.383456
[17] Qiu J. Airborne polarization lidar with 1.5 μm single-photon detectors [D]. Hefei: University of Science and Technology of China, 2020. (in Chinese)
[18] Shangguan M J. Laser remote sensing with 1.5 μm single photon detectors [D]. Hefei: University of Science and Technology of China, 2017. (in Chinese)
[19] Shin D, Xu F, Wong F N, et al. Computational multi-depth single-photon imaging [J]. Optics Express, 2016, 24(3): 253588.
[20] Tobin R, Halimi A, McCarthy A, et al. Three-dimensional single-photon imaging through obscurants [J]. Optics Express, 2019, 27(4): 4590-4611. doi:  10.1364/OE.27.004590