[1] Wu Hua, Li Xiujuan, Li Zhaoliang, et al. Hyperspectral thermal infrared remote sensing: Current status and perspectives [J]. National Remote Sensing Bulletin, 2021, 25(8): 24. (in Chinese)
[2] Hackwell J A, Warren D W, Bongiovi R P, et al. LWIR/MWIR imaging hyperspectral sensor for airborne and ground-based remote sensing [C]//Imaging spectrometry II. International Society for Optics and Photonics, 1996, 2819: 102-107.
[3] Dai Jingjing, Zhao Longxian, Jiang Qi, et al. Review of thermal-infrared spectroscopy applied in geological ore exploration [J]. Acta Geologica Sinica, 2020, 94(8): 2520-2533. (in Chinese)
[4] Li Z L, Wu H, Wang N, et al. Land surface emissivity retrieval from satellite data [J]. International Journal of Remote Sensing, 2013, 34(9-10): 3084-3127. doi:  10.1080/01431161.2012.716540
[5] Raissouni N, Sobrino J A. Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco [J]. International Journal of Remote Sensing, 2000, 21(2): 353-366. doi:  10.1080/014311600210876
[6] Guo G, Liu B, Liu C. Thermal infrared spectral characteristics of bunker fuel oil to determine oil-film thickness and API [J]. Journal of Marine Science and Engineering, 2020, 8(2): 135. doi:  10.3390/jmse8020135
[7] Vaughan R G, Calvin W M, Taranik J V. SEBASS hyperspectral thermal infrared data: Surface emissivity measurement and mineral mapping [J]. Remote Sensing Environment, 2003, 85: 48-63. doi:  10.1016/S0034-4257(02)00186-4
[8] Lucey P G, Williams T J, Mignard M, et al. AHI: an airborne long-wave infrared hyperspectral imager [C]//Airborne Reconnaissance XXII. International Society for Optics and Photonics, 1998, 3431: 36-43.
[9] Shepanski J, Sandor-Leahy S. The NGST long wave hyperspectral imaging spectrometer: sensor hardware and data processing [C]//Infrared Technology and Applications XXXII. International Society for Optics and Photonics, 2006, 6206: 62062B.
[10] Puckrin E, Turcotte C S, Lahaie P, et al. Airborne measurements in the infrared using FTIR-based imaging hyperspectral sensors [C]//Electro-Optical Remote Sensing, Photonic Technolo-gies, and Applications III. International Society for Optics and Photonics, 2009, 7482: 74820S.
[11] Warren D W, Boucher R H, Gutierrez D J, et al. MAKO: a high-performance, airborne imaging spectrometer for the long-wave infrared [C]//Imaging Spectrometry XV. International Society for Optics and Photonics, 2010, 7812: 78120N.
[12] Hall J L, Boucher R H, Buckland K N, et al. MAGI: A new high-performance airborne thermal-infrared imaging spectrometer for Earth science applications [J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(10): 5447-5457. doi:  10.1109/TGRS.2015.2422817
[13] Coudrain C, Bernhardt S, Caes M, et al. SIELETERS, an airborne infrared dual-band spectro-imaging system for measurement of scene spectral signatures [J]. Optics Express, 2015, 23(12): 16164-16176. doi:  10.1364/OE.23.016164
[14] Hook S J, Johnson W R, Abrams M J. NASA’s Hyperspectral Thermal Emission Spectrometer (HyTES) [M]//Thermal Infrared Remote Sensing: Sensors, Methods, Applications. Dordrecht, Holland: Springer, 2013: 93-115.
[15] Li Chunlai, Liu Chengyu, Jin Jian, et al. Spectral measurement of minerals and gases based on airborne thermal-infrared hyperspectral imaging system [J]. Journal of Infrared and Millimeter Waves, 2020, 39(6): 767-777. (in Chinese)
[16] Liu C, Xu R, Xie F, et al. New Airborne thermal-infrared hyperspectral imager system: Initial validation [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 4149-4165. doi:  10.1109/JSTARS.2020.3010092
[17] Hall J L, Boucher R H, Buckland K N. Mako airborne thermal infrared imaging spectrometer: performance update [C]//Imaging Spectrometry XXI. International Society for Optics and Photonics. 2016, 9976: 997604.
[18] The first airborne thermal infrared hyperspectral imager in China has been successfully developed [J]. Infrared, 2016, 37(5): 50. (in Chinese)
[19] Yuan L, He Z, Lv G, et al. Optical design, laboratory test, and calibration of airborne long wave infrared imaging spectrometer [J]. Optics Express, 2017, 25(19): 22440. doi:  10.1364/OE.25.022440
[20] Wang Jianyu, Li Chunlai, Lv Gang, et al. The calibration of an infrared hyperspectral imager and its flight test validation in laboratory [J]. Journal of Infrared and Millimeter Waves, 2017, 36(1): 69-74. (in Chinese)
[21] Popa D, Udrea F. Towards integrated mid-infrared gas sensors [J]. Sensors, 2019, 19(9): 2076. doi:  10.3390/s19092076
[22] Hulley G C, Duren R M, Hopkins F M, et al. High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES) [J]. Atmospheric Measurement Techniques, 2016, 9: 2393-2408. doi:  10.5194/amt-9-2393-2016
[23] Manolakis D, Pieper M, Truslow E, et al. Longwave infrared hyperspectral imaging: Principles, progress, and challenges [J]. IEEE Geoscience and Remote Sensing Magazine, 2019, 7(2): 72-100. doi:  10.1109/MGRS.2018.2889610
[24] Harsanyi J C, Chang C I. Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach [J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(4): 779-785. doi:  10.1109/36.298007
[25] Pogorzala D R, Messinger D W, Salvaggio C, et al. Gas plume species identification by regression analyses [C]//Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery X. SPIE, 2004, 5425: 583-591.
[26] Lee J H, Yu H G, Park D J, et al. Characterization of hazardous gases using an infrared hyperspectral imaging system [J]. Instrumentation Science & Technology, 2015, 43(4): 469-484.
[27] Sabbah S, Harig R, Rusch P, et al. Remote sensing of gases by hyperspectral imaging: system performance and measurements [J]. Optical Engineering, 2012, 51(11): 111717. doi:  10.1117/1.OE.51.11.111717
[28] Williams D J, Feldman B L, Williams T J, et al. Detection and identification of toxic air pollutants using airborne LWIR hyperspectral imaging [C]//Multispectral and Hyperspectral Remote Sensing Instruments and Applications II. International Society for Optics and Photonics, 2005, 5655: 134-141.
[29] Scafutto R D P M, Souza Filho C R, Riley D N, et al. Evaluation of thermal infrared hyperspectral imagery for the detection of onshore methane plumes: Significance for hydrocarbon exploration and monitoring [J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 64: 311-325. doi:  10.1016/j.jag.2017.07.002
[30] Scafutto R D P M, Souza Filho C R. Detection of heavy hydrocarbon plumes (Ethane, propane and Butane) using airborne longwave (7.6–13.5 μm) infrared hyperspectral data [J]. Fuel, 2019, 242: 863-870. doi:  10.1016/j.fuel.2018.12.127
[31] Funk C C, Theiler J, Roberts D A, et al. Clustering to improve matched filter detection of weak gas plumes in hyperspectral thermal imagery [J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(7): 1410-1420. doi:  10.1109/36.934073
[32] Patrick H, Christian P, Jeff H, et al. Nonlinear Bayesian algorithms for gas plume detection and estimation from hyper-spectral thermal image data [J]. Sensors, 2007, 7(6): 905-920. doi:  10.3390/s7060905
[33] Broadwater J B, Spisz T S, Carr A K. Detection of gas plumes in cluttered environments using long-wave infrared hyperspectral sensors [C]//Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing IX. SPIE, 2008, 6954: 193-204.
[34] Pieper M L, Manolakis D, Lockwood R, et al. Hyperspectral detection and discrimination using the ACE algorithm [C]//Imaging Spectrometry XVI. SPIE, 2011, 8158: 92-103.
[35] Schaum A. A uniformly most powerful detector of gas plumes against a cluttered background [J]. Remote Sensing of Environment, 2021, 260: 112443. doi:  10.1016/j.rse.2021.112443
[36] Xu Y, Wu Z, Wei Z, et al. GAS plume detection in hyperspectral video sequence using low rank representation [C]//2016 IEEE International Conference on Image Processing (ICIP). IEEE, 2016: 2221-2225.
[37] Marrinan T, Beveridge J R, Draper B, et al. Flag-based detection of weak gas signatures in long-wave infrared hyperspectral image sequences [C]//Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXII. International Society for Optics and Photonics, 2016, 9840: 98401N.
[38] Tochon G, Chanussot J, Dalla Mura M, et al. Object tracking by hierarchical decomposition of hyperspectral video sequences: Application to chemical gas plume tracking [J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8): 4567-4585. doi:  10.1109/TGRS.2017.2694159
[39] Hirsch E, Agassi E. Detection of gaseous plumes in IR hyperspectral images—Performance analysis [J]. IEEE Sensors Journal, 2010, 10(3): 732-736. doi:  10.1109/JSEN.2009.2038188
[40] Nam H, Kim J S, Kim H J, et al. Development of a radiative transfer model for the determination of toxic gases by Fourier transform–infrared spectroscopy with a support vector machine algorithm [J]. Instrumentation Science & Technology, 2019, 47(3): 264-277.
[41] Hirsch E, Agassi E, Manor A. Using longwave infrared hyperspectral imaging for a quantitative atmospheric tracer monitoring in outdoor environments [J]. International Journal of Geosciences, 2021, 12(03): 233. doi:  10.4236/ijg.2021.123014
[42] Gabrieli A, Wright R, Porter J N, et al. Applications of quantitative thermal infrared hyperspectral imaging (8–14 μm): Measuring volcanic SO2 mass flux and determining plume transport velocity using a single sensor [J]. Bulletin of Volcanology, 2019, 81(8): 1-11.
[43] Gabrieli A, Wright R, Lucey P G, et al. Characterization and initial field test of an 8–14 μm thermal infrared hyperspectral imager for measuring SO2 in volcanic plumes [J]. Bulletin of Volcanology, 2016, 78(10): 1-13.
[44] Farley V, Vallières A, Chamberland M, et al. Performance of the FIRST: A long-wave infrared hyperspectral imaging sensor [C]//Optically Based Biological and Chemical Detection for Defence III. International Society for Optics and Photonics, 2006, 6398: 63980T.
[45] Savary S, Gagnon J P, Gross K, et al. Standoff identification and quantification of flare emissions using infrared hyperspectral imaging [C]//Advanced Environmental, Chemical, and Biological Sensing Technologies VIII. SPIE, 2011, 8024: 165-172.
[46] Cao Xifeng, Li Xiaoying, Luo Qi, et al. Review of temperature profile inversion of satellite-borne infrared hyperspectral sensor [J]. National Remote Sensing Bulletin, 2021, 25(2): 577-598. (in Chinese)