[1] Era M, Morimoto S, Tsutsui T, et al. Organic-inorganic hetero-structure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4 [J]. Applied Physics Letters, 1994, 65(6): 676-678. doi:  10.1063/1.112265
[2] Tan Z K, Moghaddam R S, Lai M L, et al. Bright light-emitting diodes based on organometal halide perovskite [J]. Nature Nanotechnology, 2014, 9(9): 687-692. doi:  10.1038/nnano.2014.149
[3] Shen X, Kang K, Yu Z, et al. Passivation strategies for mitigating defect challenges in halide perovskite light-emitting diodes [J]. Joule, 2023, 7(2): 272-308. doi:  10.1016/j.joule.2023.01.008
[4] Fakharuddin A, Gangishetty M K, Abdi-jalebi M, et al. Perovskite light-emitting diodes [J]. Nature Electronics, 2022, 5(4): 203-216. doi:  10.1038/s41928-022-00745-7
[5] Yan C, Lin K, Lu J, et al. Composition engineering to obtain efficient hybrid perovskite light-emitting diodes [J]. Frontiers of Optoelectronics, 2020, 13(3): 282-290. doi:  10.1007/s12200-020-1046-7
[6] Zhang L, Li N, Liu D, et al. Deep learning for additive screening in perovskite light-emitting diodes [J]. Angewandte Chemie International Edition, 2022, 61(37): e202209337. doi:  10.1002/anie.202209337
[7] Shan Q, Song J, Zou Y, et al. High performance metal halide perovskite light-emitting diode: from material design to device optimization [J]. Small, 2017, 13(45): 1701770. doi:  10.1002/smll.201701770
[8] Han T, Tan S, Xue J, et al. Interface and defect engineering for metal halide perovskite optoelectronic devices [J]. Advanced Materials, 2019, 31(47): 1803515. doi:  10.1002/adma.201803515
[9] Saleem M I, Choi R, Lee J H. Light outcoupling strategies in oriented perovskite light-emitting-diodes: recent trends, opportunities, and challenges toward innovation [J]. Materials Chemistry Frontiers, 2023, 7(12): 2316-2336. doi:  10.1039/D2QM01365G
[10] Xia Y, Lou Y H, Zhou Y H, et al. Solvent strategies toward high-performance perovskite light-emitting diodes [J]. Journal of Materials Chemistry C, 2022, 10(9): 3276-3286. doi:  10.1039/D1TC05685A
[11] Chen H, Fan L, Zhang R, et al. Sodium ion modifying in situ fabricated CsPbBr3 nanoparticles for efficient perovskite light emitting diodes [J]. Advanced Optical Materials, 2019, 7(21): 1900747. doi:  10.1002/adom.201900747
[12] Liu Y, Ono L K, Qi Y. Organic additive engineering toward efficient perovskite light-emitting diodes [J]. InfoMat, 2020, 2(6): 1095-1108. doi:  10.1002/inf2.12098
[13] Wang R, Zhang Y, Yu F, et al. An efficient CsPbBr3 perovskite light-emitting diode by employing 1, 3, 5-tri(m-pyrid-3-yl-phenyl)benzene as a hole and exciton blocking layer [J]. Journal of Luminescence, 2020, 219: 116915. doi:  https://doi.org/10.1016/j.jlumin.2019.116915
[14] Wang R, Jia Y L, Ding L, et al. Efficient halide perovskite light-emitting diodes with emissive layer consisted of multilayer coatings [J]. Journal of Applied Physics, 2019, 126(16): 165502. doi:  10.1063/1.5110523
[15] Wang Run, Jia Yalan, Zhang Yue, et al. High efficiency green perovskite light-emitting diodes based on exciton blocking layer [J]. Acta Physica Sinica, 2020, 69(3): 038501. (in Chinese) doi:  10.7498/aps.69.20191263
[16] Gao C H, Ma X J, Zhang Y, et al. 84% efficiency improvement in all-inorganic perovskite light-emitting diodes assisted by a phosphorescent material [J]. RSC Advances, 2018, 8(28): 15698-15702. doi:  10.1039/C7RA13231J
[17] Gao C H, Yu F X, Xiong Z Y, et al. 47-Fold EQE improvement in CsPbBr3 perovskite light-emitting diodes via double-additives assistance [J]. Organic Electronics, 2019, 70: 264-271. doi:  https://doi.org/10.1016/j.orgel.2019.04.018
[18] Gao C, Xiong Z, He Z, et al. Boosting the external quantum efficiency in perovskite light-emitting diodes by an exciton retrieving layer [J]. Journal of Materials Chemistry C, 2019, 7(28): 8705-8711. doi:  10.1039/C9TC02258A
[19] Gao C H, Zhang Y, Ma X J, et al. A method towards 100% internal quantum efficiency for all-inorganic cesium halide perovskite light-emitting diodes [J]. Organic Electronics, 2018, 58: 88-93. doi:  https://doi.org/10.1016/j.orgel.2018.04.007
[20] Jia Y L, Wang R, Zhang Y, et al. Large current efficiency enhancement in the CsPbBr3 perovskite light-emitting diodes assisted by an ultrathin buffer layer [J]. Journal of Luminescence, 2019, 209: 251-257. doi:  https://doi.org/10.1016/j.jlumin.2019.01.056
[21] Ban X, Yu J, He X, et al. Highly efficient quasi-2D perovskite light-emitting diodes incorporating a TADF dendrimer as an exciton-retrieving additive [J]. ACS Applied Materials & Interfaces, 2021, 13(37): 44585-44595. doi:  10.1021/acsami.1c14493
[22] He X, Qiu S, Xu Q, et al. Exciton harvesting in quasi-2D perovskite light-emitting diodes with an encapsulated thermally activated delayed fluorescence [J]. Applied Physics Letters, 2021, 119(24): 242101. doi:  10.1063/5.0071335
[23] Yang W, Gao C H, Xia Y, et al. Enhancing energy channel and carriers recycling in sky-blue perovskite light-emitting diodes via a fluorescent fortifier [J]. Applied Physics Letters, 2023, 123(15): 153502. doi:  10.1063/5.0172757
[24] Ban X, Cao Q, Yang W, et al. Developing TADF polymer as semiconductor additive for high performance perovskite light emitting diodes with dual recombination channel and small efficiency roll-off [J]. Chemical Engineering Journal, 2023, 474: 145749. doi:  https://doi.org/10.1016/j.cej.2023.145749
[25] Bai W, Xuan T, Zhao H, et al. Perovskite light-emitting diodes with an external quantum efficiency exceeding 30% [J]. Advanced Materials, 2023, 35(39): 2302283. doi:  10.1002/adma.202302283
[26] Rose G. Ueber einige neue mineralien des urals [J]. Journal für Praktische Chemie, 1840, 19(1): 459-468. doi:  https://doi.org/10.1002/prac.18400190179
[27] Wei Z, Xing J. The rise of perovskite light-emitting diodes [J]. The Journal of Physical Chemistry Letters, 2019, 10(11): 3035-3042. doi:  10.1021/acs.jpclett.9b00277
[28] Chen Q, De Marco N, Yang Y (Michael), et al. Under the spot-light: the organic-inorganic hybrid halide perovskite for optoelectronic applications [J]. Nano Today, 2015, 10(3): 355-396. doi:  10.1016/j.nantod.2015.04.009
[29] Lan C, Zhou Z, Wei R, et al. Two-dimensional perovskite materials: from synthesis to energy-related applications [J]. Materials Today Energy, 2019, 11: 61-82. doi:  https://doi.org/10.1016/j.mtener.2018.10.008
[30] Chen Y, Sun Y, Peng J, et al. 2D ruddlesden-popper perovskites for optoelectronics [J]. Advanced Materials, 2018, 30(2): 1703487. doi:  10.1002/adma.201703487
[31] Gao X, Zhang X, Yin W, et al. Ruddlesden-popper perovskites: synthesis and optical properties for optoelectronic applications [J]. Advanced Science, 2019, 6(22): 1900941. doi:  10.1002/advs.201900941
[32] Wang N, Cheng L, Ge R, et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells [J]. Nature Photonics, 2016, 10(11): 699-704. doi:  10.1038/nphoton.2016.185
[33] Chen P, Meng Y, Ahmadi M, et al. Charge-transfer versus energy-transfer in quasi-2D perovskite light-emitting diodes [J]. Nano Energy, 2018, 50: 615-622. doi:  https://doi.org/10.1016/j.nanoen.2018.06.008
[34] Bade S, Shan X, Hoang P, et al. Stretchable light-emitting diodes with organometal-halide-perovskite–polymer composite emitters [J]. Advanced Materials, 2017, 29(23): 1607053. doi:  https://doi.org/10.1002/adma.201607053
[35] Yu F X, Zhang Y, Xiong Z Y, et al. Full coverage all-inorganic cesium lead halide perovskite film for high-efficiency light-emitting diodes assisted by 1, 3, 5-tri(m-pyrid-3-yl-phenyl)ben-zene [J]. Organic Electronics, 2017, 50: 480-484. doi:  https://doi.org/10.1016/j.orgel.2017.08.026