[1] Tennyson E M, Doherty T A S, Stranks S D. Heterogeneity at multiple length scales in halide perovskite semiconductors [J]. Nature Reviews Materials, 2019, 4(9): 573-587. doi:  10.1038/s41578-019-0125-0
[2] Tennyson E M, Howard J M, Leite M S. Mesoscale functional imaging of materials for photovoltaics [J]. ACS Energy Letters, 2017, 2(8): 1825-1834. doi:  10.1021/acsenergylett.7b00382
[3] Krogstrup P, Jørgensen H I, Heiss M, et al. Single-nanowire solar cells beyond the Shockley–Queisser limit [J]. Nature Photonics, 2013, 7(4): 306-310. doi:  10.1038/nphoton.2013.32
[4] Sundararajan S P, Grady N K, Mirin N, et al. Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode [J]. Nano Letters, 2008, 8(2): 624-630. doi:  10.1021/nl073030+
[5] Ha D, Gong C, Leite M S, et al. Demonstration of resonance coupling in scalable dielectric microresonator coatings for photovoltaics [J]. ACS Applied Materials & Interfaces, 2016, 8(37): 24536-24542.
[6] Hennessy J, Mcdonald P. Simple modeling techniques for analysis of laser beam induced current images [J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1990, 8(2): 1127-1132.
[7] Wallmark J T. A new semiconductor photocell using lateral photoeffect [J]. Proceedings of the IRE, 1957, 45(4): 474-483. doi:  10.1109/JRPROC.1957.278435
[8] Szedon J R, Temofonte T A, O'keeffe T W. Scanned laser response studies of metal-insulator-silicon solar cells in polycrystalline czochralski silicon [J]. Solar Cells, 1980, 1(3): 251-259. doi:  10.1016/0379-6787(80)90071-X
[9] Marek J. Light‐beam‐induced current characterization of grain boundaries [J]. Journal of Applied Physics, 1984, 55(2): 318-326. doi:  10.1063/1.333047
[10] Bajaj J, Bubulac L O, Newman P R, et al. Spatial mapping of electrically active defects in HgCdTe using laser beam‐induced current [J]. Journal of Vacuum Science & Technology A, 1987, 5(5): 3186-3189.
[11] Chen J, Sekiguchi T, Yang D, et al. Electron-beam-induced current study of grain boundaries in multicrystalline silicon [J]. Journal of Applied Physics, 2004, 96(10): 5490-5495. doi:  10.1063/1.1797548
[12] Mukhopadhyay S, Das A J, Narayan K S. High-resolution photocurrent imaging of bulk heterojunction solar cells [J]. Journal of Physical Chemistry Letters, 2013, 4(1): 161-169. doi:  10.1021/jz3018336
[13] Qiu W, Hu W. Laser beam induced current microscopy and photocurrent mapping for junction characterization of infrared photodetectors [J]. Science China Physics, Mechanics & Astronomy, 2014, 58(2): 1-13.
[14] Li Y, Hu W, Ye Z, et al. Direct mapping and characterization of dry etch damage-induced PN junction for long-wavelength HgCdTe infrared detector arrays [J]. Optics Letters, 2017, 42(7): 1325-1328. doi:  10.1364/OL.42.001325
[15] Kwarikunda N, Van Dyk E E, Vorster F J, et al. Application of LBIC measurements for characterisation of triple junction solar cells [J]. Physica B: Condensed Matter, 2014, 439: 122-125. doi:  10.1016/j.physb.2013.11.052
[16] Liu F, Kar S. Quantum Carrier Reinvestment-induced ultrahigh and broadband photocurrent responses in graphene–silicon junctions [J]. ACS Nano, 2014, 8(10): 10270-10279. doi:  10.1021/nn503484s
[17] Reuter C, Frisenda R, Lin D-Y, et al. A versatile scanning photocurrent mapping system to characterize optoelectronic devices based on 2D materials [J]. Small Methods, 2017, 1(7): 1700119. doi:  10.1002/smtd.201700119
[18] Schubert M C, Mundt L E, Walter D, et al. Spatially resolved performance analysis for perovskite solar cells [J]. Advanced Energy Materials, 2020, 10(26): 1904001. doi:  10.1002/aenm.201904001
[19] Mann S A, Oener S Z, Cavalli A, et al. Quantifying losses and thermodynamic limits in nanophotonic solar cells [J]. Nature Nanotechnology, 2016, 11(12): 1071-1075. doi:  10.1038/nnano.2016.162
[20] Burghard M, Mews A. High-resolution photocurrent mapping of carbon nanostructures [J]. ACS Nano, 2012, 6(7): 5752-5756. doi:  10.1021/nn3029088
[21] Rauhut N, Engel M, Steiner M, et al. Antenna-enhanced photocurrent microscopy on single-walled carbon nanotubes at 30 nm resolution [J]. ACS Nano, 2012, 6(7): 6416-6421. doi:  10.1021/nn301979c
[22] Coffey D C, Reid O G, Rodovsky D B, et al. Mapping local photocurrents in polymer/fullerene solar cells with photoconductive atomic force microscopy [J]. Nano Letters, 2007, 7(3): 738-744. doi:  10.1021/nl062989e
[23] Parkinson P, Lee Y H, Fu L, et al. Three-dimensional in situ photocurrent mapping for nanowire photovoltaics [J]. Nano Letters, 2013, 13(4): 1405-1409. doi:  10.1021/nl304170q
[24] Zhu H, Xie H, Yang Y, et al. Mapping hot electron response of individual gold nanocrystals on a TiO2 photoanode [J]. Nano Letters, 2020, 20(4): 2423-2431. doi:  10.1021/acs.nanolett.9b05125
[25] Larmande Y, Vervisch V, Delaporte P, et al. LBIC measurement optimization to detect laser annealing induced defects in Si [J]. Materials Science and Engineering: B, 2012, 177(18): 1628-1632. doi:  10.1016/j.mseb.2012.08.018
[26] Mcneill C R, Frohne H, Holdsworth J L, et al. Near-field scanning photocurrent measurements of polyfluorene blend devices:   Directly correlating morphology with current generation [J]. Nano Letters, 2004, 4(12): 2503-2507. doi:  10.1021/nl048590c
[27] Tománek P, Skarvada P, Senderáková D, et al. Nanooptics of locally induced photocurrent in monocrystalline Si solar cells [C]//Photonics, Devices, and Systems IV, SPIE, 2008, 7138: 713829.
[28] Brenner T J K, Mcneill C R. Spatially resolved spectroscopic mapping of photocurrent and photoluminescence in polymer blend photovoltaic devices [J]. The Journal of Physical Chemistry C, 2011, 115(39): 19364-19370. doi:  10.1021/jp205880t
[29] Rao G, Freitag M, Chiu H Y, et al. Raman and photocurrent imaging of electrical stress-induced p-n junctions in graphene [J]. ACS Nano, 2011, 5(7): 5848-5854. doi:  10.1021/nn201611r
[30] Gao Y, Martin T P, Thomas A K, et al. Resonance raman spectroscopic- and photocurrent imaging of polythiophene/fullerene solar cells [J]. The Journal of Physical Chemistry Letters, 2009, 1(1): 178-182.
[31] Zhu T, Snaider J M, Yuan L, et al. Ultrafast dynamic microscopy of carrier and exciton transport [J]. Annual Review of Physical Chemistry, 2019, 70(1): 219-244. doi:  10.1146/annurev-physchem-042018-052605
[32] Liu X, Wu B, Zhang Q, et al. Elucidating the localized plasmonic enhancement effects from a single Ag nanowire in oganic solar cells [J]. ACS Nano, 2014, 8(10): 10101-10110. doi:  10.1021/nn505020e
[33] Yang B, Chen J, Shi Q, et al. High resolution mapping of two-photon excited photocurrent in perovskite microplate photodetector [J]. Journal of Physical Chemistry Letters, 2018, 9(17): 5017-5022. doi:  10.1021/acs.jpclett.8b02250
[34] Draguta S, Christians J A, Morozov Y V, et al. A quantitative and spatially resolved analysis of the performance-bottleneck in high efficiency, planar hybrid perovskite solar cells [J]. Energy & Environmental Science, 2018, 11(4): 960-969.
[35] Eperon G E, Moerman D, Ginger D S. Anticorrelation between local photoluminescence and photocurrent suggests variability in contact to active layer in perovskite solar cells [J]. ACS Nano, 2016, 10(11): 10258-10266. doi:  10.1021/acsnano.6b05825
[36] Leblebici S Y, Leppert L, Li Y, et al. Facet-dependent photovoltaic efficiency variations in single grains of hybrid halide perovskite [J]. Nature Energy, 2016, 1(8): 16093. doi:  10.1038/nenergy.2016.93
[37] Tennyson E M, Frantz J A, Howard J M, et al. Photovoltage tomography in polycrystalline solar cells [J]. ACS Energy Letters, 2016, 1(5): 899-905. doi:  10.1021/acsenergylett.6b00331
[38] Tennyson E M, Garrett J L, Frantz J A, et al. Nanoimaging of open-circuit voltage in photovoltaic devices [J]. Advanced Energy Materials, 2015, 5(23): 1501142. doi:  10.1002/aenm.201501142
[39] Leite M S, Abashin M, Lezec H J, et al. Nanoscale imaging of photocurrent and efficiency in CdTe solar cells [J]. ACS Nano, 2014, 8(11): 11883-11890. doi:  10.1021/nn5052585
[40] West B M, Stuckelberger M, Guthrey H, et al. Grain engineering: How nanoscale inhomogeneities can control charge collection in solar cells [J]. Nano Energy, 2017, 32: 488-493. doi:  10.1016/j.nanoen.2016.12.011
[41] Lee E J, Balasubramanian K, Weitz R T, et al. Contact and edge effects in graphene devices [J]. Nature Nanotechnology, 2008, 3(8): 486-490. doi:  10.1038/nnano.2008.172
[42] Buscema M, Barkelid M, Zwiller V, et al. Large and tunable photothermoelectric effect in single-layer MoS2 [J]. Nano Letters, 2013, 13(2): 358-363. doi:  10.1021/nl303321g
[43] Tagliabue G, Jermyn A S, Sundararaman R, et al. Quantifying the role of surface plasmon excitation and hot carrier transport in plasmonic devices [J]. Nature Communications, 2018, 9(1): 3394. doi:  10.1038/s41467-018-05968-x
[44] Ha D, Yoon Y, Zhitenev N B. Nanoscale imaging of photocurrent enhancement by resonator array photovoltaic coatings [J]. Nanotechnology, 2018, 29(14): 145401. doi:  10.1088/1361-6528/aaab0c
[45] West B M, Stuckelberger M, Nietzold T, et al. Machine learning and correlative microscopy: How 'Big Data' techniques can benefit thin film solar cell characterization [C]//Proceedings of the 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), 2017: 3309-3314.
[46] Tennyson E M, Gong C, Leite M S. Imaging energy harvesting and storage systems at the nanoscale [J]. ACS Energy Letters, 2017, 2(12): 2761-2777. doi:  10.1021/acsenergylett.7b00944
[47] Nilsson Z, Van Erdewyk M, Wang L, et al. Molecular reaction imaging of single-entity photoelectrodes [J]. ACS Energy Letters, 2020, 5(5): 1474-1486. doi:  10.1021/acsenergylett.0c00284