[1] Sizov F, Rogalski A. THz detectors [J]. Progress in Quantum Electronics, 2010, 34(5): 278-347. doi:  10.1016/j.pquantelec.2010.06.002
[2] Wang R, Xie L, Hameed S, et al. Mechanisms and applications of carbon nanotubes in terahertz devices: A review [J]. Carbon, 2018, 132: 42-58. doi:  10.1016/j.carbon.2018.02.005
[3] Sizov F. Terahertz radiation detectors: the state-of-the-art [J]. Semiconductor Science and Technology, 2018, 33(12): 123001. doi:  10.1088/1361-6641/aae473
[4] He Y, Wu Q, Yan S. Multi-band terahertz absorber at 0.1–1 THz frequency based on ultra-thin metamaterial [J]. Plasmonics, 2019, 14(6): 1303-1310. doi:  10.1007/s11468-019-00936-7
[5] Safian R, Ghazi G, Mohammadian N. Review of photomixing continuous-wave terahertz systems and current application trends in terahertz domain [J]. Optical Engineering, 2019, 58(11): 110901.
[6] Gopalan P, Sensale-Rodriguez B. 2D Materials for terahertz modulation [J]. Advanced Optical Materials, 2020, 8(3): 1900550. doi:  10.1002/adom.201900550
[7] Wang Y, Wu W, Zhao Z. Recent progress and remaining challenges of 2D material-based terahertz detectors [J]. Infrared Physics & Technology, 2019, 102: 103024.
[8] He X, Léonard F, Kono J. Uncooled carbon nanotube photodetectors [J]. Advanced Optical Materials, 2015, 3(8): 989-1011. doi:  10.1002/adom.201500237
[9] Abergel D S L, Apalkov V, Berashevich J, et al. Properties of graphene: a theoretical perspective [J]. Advances in Physics, 2010, 59(4): 261-482. doi:  10.1080/00018732.2010.487978
[10] Vicarelli L, Vitiello M S, Coquillat D, et al. Graphene field-effect transistors as room-temperature terahertz detectors [J]. Nature Materials, 2012, 11(10): 865-871. doi:  10.1038/nmat3417
[11] Tomadin A, Polini M. Theory of the plasma-wave photoresponse of a gated graphene sheet [J]. Physical Review B, 2013, 88(20): 205426. doi:  10.1103/PhysRevB.88.205426
[12] Fiori G, Bonaccorso F, Iannaccone G, et al. Electronics based on two-dimensional materials [J]. Nature Nanotechnology, 2014, 9(10): 768-779. doi:  10.1038/nnano.2014.207
[13] Koppens F H L, Mueller T, Avouris P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems [J]. Nature Nanotechnology, 2014, 9(10): 780-793. doi:  10.1038/nnano.2014.215
[14] Viti L, Hu J, Coquillat D, et al. Efficient Terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response [J]. Scientific Reports, 2016, 6: 20474. doi:  10.1038/srep20474
[15] Lu X, Sun L, Jiang P, et al. Progress of photodetectors based on the photothermoelectric effect [J]. Advanced Materials, 2019, 31(50): 1902044. doi:  10.1002/adma.201902044
[16] Castilla S, Terres B, Autore M, et al. Fast and sensitive terahertz detection using an antenna-integrated graphene pn junction [J]. Nano Letters, 2019, 19(5): 2765-2773. doi:  10.1021/acs.nanolett.8b04171
[17] Chen M, Wang Y, Wen J, et al. Annealing temperature-dependent terahertz thermal-electrical conversion characteristics of three-dimensional microporous graphene [J]. ACS Applied Materials & Interfaces, 2019, 11(6): 6411-6420.
[18] Li H, Wan W J, Tan Z Y, et al. 6.2 GHz modulated terahertz light detection using fast terahertz quantum well photodetectors [J]. Scientific Reports, 2017, 7(1): 1-8. doi:  10.1038/s41598-016-0028-x
[19] Viti L, Hu J, Coquillat D, et al. Heterostructured hBN-BP-hBN nanodetectors at terahertz frequencies [J]. Advanced Materials, 2016, 28(34): 7390-7396. doi:  10.1002/adma.201601736
[20] Yadav D, Tombet S B, Watanabe T, et al. Terahertz wave generation and detection in double-graphene layered van der Waals heterostructures [J]. 2D Materials, 2016, 3(4): 045009. doi:  10.1088/2053-1583/3/4/045009
[21] Rogalski A, Kopytko M, Martyniuk P. Two-dimensional infrared and terahertz detectors: Outlook and status [J]. Applied Physics Reviews, 2019, 6(2): 021316. doi:  10.1063/1.5088578
[22] Mittendorff M, Winnerl S, Kamann J, et al. Ultrafast graphene-based broadband THz detector [J]. Applied Physics Letters, 2013, 103(2): 021113. doi:  10.1063/1.4813621
[23] El Fatimy A, Myers-Ward R L, Boyd A K, et al. Epitaxial graphene quantum dots for high-performance terahertz bolometers [J]. Nature Nanotechnology, 2016, 11(4): 335-338. doi:  10.1038/nnano.2015.303
[24] Miao W, Gao H, Wang Z, et al. A graphene-based terahertz hot electron bolometer with Johnson noise readout [J]. Journal of Low Temperature Physics, 2018, 193(3-4): 387-392. doi:  10.1007/s10909-018-1972-6
[25] Viti L, Politano A, Zhang K, et al. Thermoelectric terahertz photodetectors based on selenium-doped black phosphorus flakes [J]. Nanoscale, 2019, 11: 1995-2002.
[26] Liu Z, Liang Z, Tang W, et al. Design and fabrication of low-deformation micro-bolometers for THz detectors [J]. Infrared Physics & Technology, 2020, 105: 103241.
[27] Ullah Z, Witjaksono G, Nawi I, et al. A review on the development of tunable graphene nanoantennas for terahertz optoelectronic and plasmonic applications [J]. Sensors, 2020, 20(5): 1401. doi:  10.3390/s20051401
[28] Lewis R A. A review of terahertz sources [J]. Journal of Physics D: Applied Physics, 2014, 47(37): 374001. doi:  10.1088/0022-3727/47/37/374001
[29] Cai X, Sushkov A B, Suess R J, et al. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene [J]. Nature Nanotechnology, 2014, 9(10): 814. doi:  10.1038/nnano.2014.182
[30] Deng X, Wang Y, Zhao Z, et al. Terahertz-induced photothermoelectric response in graphene-metal contact structures [J]. Journal of Physics D: Applied Physics, 2016, 49(42): 425101. doi:  10.1088/0022-3727/49/42/425101
[31] Leong E, Suess R J, Sushkov A B, et al. Terahertz photoresponse of black phosphorus [J]. Optics Express, 2017, 25(11): 12666-12674. doi:  10.1364/OE.25.012666
[32] Lin Y J, Jarrahi M. Heterodyne terahertz detection through electronic and optoelectronic mixers [J]. Reports on Progress in Physics, 2020, 83(6): 066101. doi:  10.1088/1361-6633/ab82f6
[33] Lu P K, Turan D, Jarrahi M. High-sensitivity telecommunication-compatible photoconductive terahertz detection through carrier transit time reduction [J]. Optics Express, 2020, 28(18): 26324-26335. doi:  10.1364/OE.400380
[34] Buscema M, Island J O, Groenendijk D J, et al. Photocurrent generation with two dimensional van der Waals semiconductors [J]. Chem Soc Rev, 2015, 44: 3691-3718. doi:  10.1039/C5CS00106D
[35] Tong J, Zhou W, Qu Y, et al. Surface plasmon induced direct detection of long wavelength photons [J]. Nature Communications, 2017, 8(1): 1-9. doi:  10.1038/s41467-016-0009-6
[36] Liu H, Chen Z, et al. Terahertz photodetector arrays based on a large scale MoSe2 monolayer [J]. Materials Chemistry C, 2016, 4: 9399-9404. doi:  10.1039/C6TC02748B
[37] Zak A, Andersson M A, Bauer M, et al. Antenna-integrated 0.6 THz FET direct detectors based on CVD graphene [J]. Nano Letters, 2014, 14(10): 5834-5838. doi:  10.1021/nl5027309
[38] Spirito D, Coquillat D, De Bonis S L, et al. High performance bilayer-graphene terahertz detectors [J]. Applied Physics Letters, 2014, 104(6): 061111. doi:  10.1063/1.4864082
[39] Viti L, Hu J, Coquillat D, et al. Black phosphorus terahertz photodetectors [J]. Advanced Materials, 2015, 27(37): 5567-5572. doi:  10.1002/adma.201502052
[40] Tong J, Muthee M, Chen S Y, et al. Antenna enhanced graphene THz emitter and detector [J]. Nano Letters, 2015, 15(8): 5295-5301. doi:  10.1021/acs.nanolett.5b01635
[41] Bianco F, Perenzoni D, Convertino D, et al. Terahertz detection by epitaxial-graphene field-effect-transistors on silicon carbide [J]. Applied Physics Letters, 2015, 107(13): 131104. doi:  10.1063/1.4932091
[42] Qin H, Sun J, Liang S, et al. Room-temperature, low-impedance and high-sensitivity terahertz direct detector based on bilayer graphene field-effect transistor [J]. Carbon, 2017, 116: 760-765. doi:  10.1016/j.carbon.2017.02.037
[43] Long M, Wang P, Fang H, et al. Progress, challenges, and opportunities for 2D material based photodetectors [J]. Advanced Functional Materials, 2019, 29(19): 1803807. doi:  10.1002/adfm.201803807
[44] Li Y, Zhang Y, Chen Z, et al. Room-temperature broadband terahertz detector based on three-dimensional graphene[C]//Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XIII. International Society for Optics and Photonics, 2020, 11279: 1127914.
[45] Tang Weiwei, Politano A, Guo Cheng, et al. Ultrasensitive room-temperature terahertz direct detection based on a bismuth selenide topological insulator [J]. Advanced Functional Materials, 2018, 28(31): 1801786. doi:  10.1002/adfm.201801786
[46] Wang L, Liu C, Chen X, et al. Toward sensitive room‐temperature broadband detection from infrared to terahertz with antenna-integrated black phosphorus photoconductor [J]. Advanced Functional Materials, 2017, 27(7): 1604414. doi:  10.1002/adfm.201604414
[47] Liu C, Wang L, Chen X, et al. Room-temperature high-gain long-wavelength photodetector via optical-electrical controlling of hot carriers in graphene [J]. Advanced Optical Materials, 2018, 6(24): 1800836. doi:  10.1002/adom.201800836
[48] Wang L, Wang J, Liu C, et al. Distinctive performance of terahertz photodetection driven by charge-density-wave order in CVD-grown tantalum [J]. Advanced Functional Materials, 2019, 29(45): 1905057.