[1] Gan Jie, Zhang Jie. A study on situation and development of stealth target detection technology [J]. Modern Radar, 2016, 38(8): 13-16. (in Chinese)
[2] Tang Hongchen, Xu Peng, Ruan Ningjuan, et al. Detection of hypersonic moving point target [J]. Spacecraft Recovery & Remote Sensing, 2018, 39(6): 46-54. (in Chinese)
[3] Heineck J T, Banks D, Schairer E T, et al. Background oriented schlieren (BOS) of a supersonic aircraft in flight[C]//AIAA Flight Testing Conference. Denver, 2016: 3356.
[4] Yang Pengfei. Research on flow visualization based on BOS[D]. Nanjing: Nanjing University of Science and Technology, 2018. (in Chinese)
[5] Zhang Yue, Wang Xu, Su Yun, et al. High-precision atmospheric disturbance detection method for movie objects [J]. Acta Optica Sinica, 2021, 41(2): 0228002. (in Chinese)
[6] Zhang Yue, Su Yun, Gao Peng, et al. Visual monitoring method for atmospheric disturbance of moving objects [J]. Infrared and Laser Engineering, 2020, 49(8): 20190535. (in Chinese)
[7] Dalziel S B, Hughes G O, Sutherland B R. Whole-field density measurements by ‘synthetic schlieren’ [J]. Experiments in Fluids, 2000, 28(4): 322-335. doi:  10.1007/s003480050391
[8] Meier G. Computerized background-oriented schlieren [J]. Experiments in Fluids, 2002, 33(1): 181-187.
[9] Raffel M , Richard H , Meier G E A. On the applicability of background oriented optical tomography for large scale aerodynamic investigations [J]. Experiments in Fluids, 2000, 28(5): 477-481. doi:  10.1007/s003480050408
[10] Erik G, Jörg S. The background oriented schlieren technique: Sensitivity, accuracy, resolution and application to a three-dimensional density field [J]. Experiments in Fluids, 2007, 43(2-3): 241-249. doi:  10.1007/s00348-007-0331-1
[11] Michael J, Gary S. Natural-background-oriented schlieren imaging [J]. Experiments in Fluids, 2010, 48(1): 59-68. doi:  10.1007/s00348-009-0709-3
[12] Santos L, Stryczniewicz W. Application of background oriented schlieren for quantitative measurement of transonic flows [J]. Journal of Physics: Conference Series, 2018, 1101(1): 1663-1668.
[13] Gupta R, Das C, Datta A, et al. Background Oriented Schlieren (BOS) imaging of condensation from humid air on wettability-engineered surfaces [J]. Experimental Thermal and Fluid Science, 2019, 109: 961-964.
[14] Ramaiah J, Ajithaprasad S, Rajshekhar G, et al. Fast and robust method for flow analysis using GPU assisted diffractive optical element based background oriented schlieren (BOS) [J]. Optics and Lasers in Engineering, 2020, 126: 684-686.
[15] Amjad S, Karami S, Soria J, et al. Assessment of three-dimensional density measurements from tomographic background-oriented schlieren (BOS) [J]. Measurement Science and Technology, 2020, 31(11): 114002. doi:  10.1088/1361-6501/ab955a
[16] Song Lihao. Research on hypersonic vehicle-borne radar target detection under plasma sheath[D]. Xi'an: Xidian University, 2020. (in Chinese)
[17] Luo Qi. Study on stealth characteristics of plasma sheath[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010. (in Chinese)
[18] Hayami R A. The application of instrumented light gas gun facilities for hypervelocity aerophysics research[C]//17 th Aerospace Ground Testing Conference, 1992: 3998.
[19] Ling Yongsun. Plasma stealth technology and the possibility of applying it to aeroplane [J]. Journal of Airforce Engineering University, 2000, 1(2): 1-3. (in Chinese)
[20] Koretzky E, Kuo S P. Characterization of an atmospheric pressure plasma generated by a plasma torch array [J]. Physics of Plasma, 1998, 5(10): 3774. doi:  10.1063/1.872741
[21] Kuo S P, Koretzky E, Vidmar R J. Temperature measurement of an atmospheric-pressure plasma torch [J]. Review of Scientific Instruments, 1999, 70(7): 3032.
[22] Weston V H. Oblique incident of an electromagnetic wave on plasma half-space [J]. Physics of Fluids, 1967, 10: 632-640. doi:  10.1063/1.1762158
[23] Wait J R. Oblique reflection of a plane impulsive electromagnetic wave from a plasma half-space [J]. Physics of Fluids, 1969, 12: 1521-1522. doi:  10.1063/1.1692698
[24] Harrison C. On the bistatic scattering cross section of a reentry capsule with ionized wake [J]. IEEE Transactions on Antennas Propagation, 1969, 17: 374-376. doi:  10.1109/TAP.1969.1139439
[25] Sotnikov V I, Leboeuf J N, Mudaliar S. Scattering of electromagnetic waves in the pressure of wave turbulence excited by a flow with velocity shear [J]. IEEE Transactions on Plasma Science, 2010, 38: 2208-2218. doi:  10.1109/TPS.2010.2049664
[26] Karin S, Denis B, Werner W. Extraction of virtual scattering centers of vehicles by ray-tracing simulations [J]. IEEE Transactions on Antennas and Propagation, 2008, 56: 3543-3551. doi:  10.1109/TAP.2008.2005436
[27] Michael W, Dmitriy S, Uwe-Carsten F. Delay-dependent doppler probability density functions for vehicle-to-vehicle scatter channels [J]. IEEE Transactions on Antennas & Propagation, 2014, 62: 2238-2249.
[28] Bhaskar C, Shashank C. Three-dimensional computation of reduction in radar cross section using plasma shielding [J]. IEEE Transactions on Plamsa Science, 2005, 33: 2027-2034. doi:  10.1109/TPS.2005.860122
[29] Rahman M T, Dewan M N, Ahmed A, et al. A time-dependent collisional sheath model for dual-frequency capacitively coupled RF Plasma [J]. IEEE Transactions on Plamsa Science, 2013, 41: 17-23. doi:  10.1109/TPS.2012.2227826
[30] Kim H C, Lee J K, Shon J W. Analytic model for a dual frequency capacitive discharge [J]. Physics of Plasmas, 2003, 10(11): 4545-4551. doi:  10.1063/1.1621000
[31] Hass F A. A simple model of an asymmetric capacitive plasma with dual frequency [J]. Applied Physics Letter, 2004, 37: 3117-3120.
[32] Lee J K, Babaeva N Y, Kim H C, et al. Simulation of capacitively coupled single-and dual-frequency RF discharges [J]. IEEE Transactions on Plamsa Science, 2004, 32: 47-53. doi:  10.1109/TPS.2004.823975
[33] Georgieva V, Bogaerts A, Gijbels R. Numerical investiga-tion of ion-energy-distribution functions in single and dual frequency capacitively coupled plasma reactors [J]. Physics of Review E, 2004, 69: 026406. doi:  10.1103/PhysRevE.69.026406
[34] Kim H C, Lee J K. Dual-frequency capacitive discharges: Effect of low-frequency current on electron distribution function [J]. Physics of Plasmas, 2005, 12(5): 053501. doi:  10.1063/1.1888325
[35] Sun Shaobo. Research on modeling and acquisition of skylight polarization patterns in real scene[D]. Hefei: Hefei University of Technology, 2020. (in Chinese)
[36] Wu Chuan. Research on navigate and location method base on atmosphyric polarization mode[D]. Hefei: Hefei University of Technology, 2017. (in Chinese)
[37] Chandrasekhar S. Radiative Transfer[M]. US: Dover Publications, 1960.
[38] Sekera Z. Recent Developments in the Study of the Polarization of Sky Light[M]. Netherlands: Netherlands Advances in Geophysics, 1956.
[39] Plass G N, Kattawar G W, Catchings F E. Matrix operator theory of radiative transfer. 1: Rayleigh scattering [J]. Applied Optics, 1973, 12(2): 314-329. doi:  10.1364/AO.12.000314
[40] Gao Jun, Fan Zhiguo. Bionic Polarized Light Navigation Method [M]. Beijing: Science Press, 2014. (in Chinese)
[41] Liang H, Bai H, Liu N, et al. Polarization navigation simulation system and skylight compass method design based upon moment of inertia [J]. Mathematical Problems in Engineering, 2020, 2020: 1-14.
[42] Li J, Chu J, Zhang R, et al. A bio-inspired attitude measurement method using polarization skylight and gravitational field [J]. Applied Optics, 2020, 59(9): 2955-2962. doi:  10.1364/AO.387770
[43] Julien D, Stéphane V, Julien R S. Polarized skylight-based heading measurements: a bio-inspired approach [J]. Journal of the Royal Society Interface, 2019, 16(150): 1-13.
[44] Hu Shuai, Gao Taichang, Li Hao, et al. Atmospheric polarization pattern simulation for small solar elevation angles and the analysis of atmospheric effect [J]. Acta Phys Sin, 2016, 65(1): 014203. (in Chinese)
[45] Liu Jing, Jin Weiqi, Wang Xia, et al. A new algorithm for polarization information restoration with considering the γ property of optoelectronic polarimeter [J]. Acta Phys Sin, 2016, 65(9): 094201. (in Chinese)
[46] Wang Chenguang, Zhang Nan, Li Dalin, et al. Calculation of heading angle using all-sky atmosphere polarization [J]. Opto-Electronic Engineering, 2015, 42(12): 60-66. (in Chinese)
[47] Chen Yue. Design and implementation of shortwave infrared polarization detection system[D]. Hefei: Hefei University of Technology, 2018. (in Chinese)
[48] Liu Junkai. Radar detection and tracking technology of the aircraft wake vortices[D].Changsha: National University of Defense Technology, 2012. (in Chinese)
[49] Shen Chun, Gao Hang, Wang Xuesong, et al. Aircraft wake vortex parameter-retrieval system based on lidar [J]. Journal of Radars, 2020, 9(6): 1032-1044. (in Chinese)
[50] Sarpkaya T. New model for vortex decay in the atmosphere [J]. Journal of Aircraft, 2012, 37(1): 53-61.
[51] Devisscher I, Lonfils T, Winckelmans G. Fast-time modeling of ground effects on wake vortex transport and decay [J]. Journal of Aircraft, 2013, 50(5): 1514-1525. doi:  10.2514/1.C032035
[52] Holzäring F, Aircraft P O. Probabilistic two-phase wake vortex decay and transport model [J]. Journal of Aircraft, 2003, 40(2): 323-331. doi:  10.2514/2.3096
[53] Holzäpfel F. Probabilistic two-phase aircraft wake-vortex model: Further development and assessment [J]. Journal of Aircraft, 2006, 43(3): 700-708. doi:  10.2514/1.16798
[54] Stephan A, Holzäpfel F, Misaka T. Aircraft wake-vortex decay in ground proximity physical mechanisms and artificial enhancement [J]. Journal of Aircraft, 2013, 50(4): 1250-1260. doi:  10.2514/1.C032179
[55] Holzäpfel F, Tchipev N, Stephan A, et al. Wind impact on single vortices and counterrotating vortex pairs in ground proximity [J]. Flow Turbulence & Combustion, 2016, 97(3): 829-848.
[56] Holzäpfel F, Stephan A, Heel T, et al. Enhanced wake vortex decay in ground proximity triggered by plate lines [J]. Easn Workshop, 2016, 88(2): 206-214.
[57] Hennemann I, Holzäpfel F. Large-eddy simulation of aircraft wake vortex deformation and topology [J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2011, 225(12): 1336-1350. doi:  10.1177/0954410011402257
[58] Sarpkaya T. Decay of wake vortices of large aircraft [J]. AIAA Journal, 1998, 36(9): 1671-1679. doi:  10.2514/2.570
[59] Koerner S, Holzäepfel F. Multi-model ensemble wake vortex prediction [J]. Aircraft Engineering, 2016, 88(2): 331-340. doi:  10.1108/AEAT-02-2015-0068
[60] Tao Wei. The research of positioning system for underwater magnetic target based on array of magnetometer[D]. Taiyuan: North University of China, 2021. (in Chinese)
[61] Sun Hexuan. Research on underwater target positioning based on magnetic anomaly detection[D]. Taiyuan: North University of China, 2021. (in Chinese)
[62] Zhao Guanyi. Research on interference mitigation and target detection of airborne magnetic anomaly detection[D]. Harbin: Harbin Institute of Technology, 2019. (in Chinese)
[63] Liu Shanghe, Xie Xining, Hu Xiaofeng. Research progresses on electrostatic electrification and discharge of aircraft [J]. Safety & EMC, 2021(5): 12-22. (in Chinese)
[64] Li Weixin, Wei Weiwei, Tu Jian, et al. Method of target orientation detection based on electronic filed vector [J]. Guidance & Fuze, 2021, 42(1): 20-24. (in Chinese)
[65] Hao Huihui. Research on passive electrostatic detection method in fuze application[D]. Chengdu: University of Electronic Science and Technology of China, 2020. (in Chinese)
[66] Xing Zheng, Wei Ming, Liu Weidong. Current status and prospects of research on electrostatic detection technology [J]. Aerodynamic Missile Journal, 2017(7): 74-76. (in Chinese)
[67] Luo Lunkai. Technology research of acoustic detection of low flying targets in the sky[D]. Qingdao: Shandong University of Science and Technology, 2009. (in Chinese)
[68] Wu Hong. Research on voice recognition technology of aerial target[D]. Nanjing : Nanjing University of Science and Technology, 2004. (in Chinese)
[69] Smith N T, Heineck J T, Schairer E T. Optical flow for flight and wind tunnel background oriented schlieren imaging[C]// 55th AIAA Aerospace Sciences Meeting, 2017: 0472.
[70] Hill M A, Haering E, Cliatt L . Flow visualization of aircraft in flight by means of background oriented schlieren using celestial objects. [EB/OL].[2017-6-14]. https://www.researchgate.net/publication/318143998_Flow_visualization_of_aircraft_in_flight_by_means_of_Background_Oriented_Schlieren_using_Celestial_Objects
[71] Heineck J T, Banks D W, Smith N T, et al. Background-oriented schlieren imaging of supersonic aircraft in flight [J]. AIAA Journal, 2021, 59(1): 11-21. doi:  10.2514/1.J059495
[72] Hill M A, Haering E A. Flow visualization of aircraft in flight by means of background oriented schlieren using celestial objects[C]//AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Denver, 2017: 3553.
[73] Joseph T. NASA captured two jets' supersonic shockwaves merging by applying new tech to an old idea[EB/OL]. [2019-3-6]. https://www.thedrive.com/the-war-zone/26822/nasa-captured-two-jets-supersonic-shockwaves-merging-by-applying-new-tech-to-an-old-idea
[74] Chen Haoran, Yang Yuhao, Liu Wei, et al. Analysis of radar detection problems for near space hyper aircraft [J]. Modern Radar, 2018, 40(8): 8-11. (in Chinese)
[75] Li J T, Guo L X. Research on electromagnetic scattering characteristics of reentry vehicles and blackout forecast model [J]. Journal of Electromagnetic Waves and Applications, 2012, 26(13): 1767-1778. doi:  10.1080/09205071.2012.712754
[76] He G L, Zhan Y F, Ge N, et al. Measuring the time-varying channel characteristics of the plasma sheath from the reflected signal [J]. IEEE Transactions on Plasma Science, 2014, 42(12): 3975-3981. doi:  10.1109/TPS.2014.2363840
[77] Zhang J , Liu Y , Li X. The study of spatial dispersion effect on electromagnetic waves propagation in the warm non-uniform re-entry plasma sheath [J]. Physics of Plasmas, 2020, 27(2): 022104.
[78] Basnet S, Patel A, Khanal R. Electronegative magnetized plasma sheath properties in the presence of non-Maxwellian electrons with a homogeneous ion source [J]. Plasma Physics and Controlled Fusion, 2020, 62(11): 115011.
[79] Tian D Y, Fan G C , Chen W F. Numerical investigation of dynamic properties of plasma sheath with pitching motion [J]. Journal of Zhejiang University-Science A: Applied Physics & Engineering, 2020, 21(3): 209-217.
[80] Liu W, Zhu J, Cui C, et al. The influence of plasma induced by α-particles on the radar echoes [J]. IEEE Transactions on Plasma Science, 2015, 43(1): 405-413. doi:  10.1109/TPS.2014.2370060
[81] Ding Y, Bai B, Gao H, et al. An analysis of radar detection on a plasma sheath covered reentry target [J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 4255-4268. doi:  10.1109/TAES.2021.3090910
[82] Bian Z, Li J, Guo L. Simulation and feature extraction of the dynamic electromagnetic scattering of a hypersonic vehicle covered with plasma sheath [J]. Remote Sensing, 2020, 12(17): 2740. doi:  10.3390/rs12172740
[83] Musselman R, Chastain S. Beyond LOS detection of hypersonic vehicles [J]. Applied Computational Electromagnetics Society Journal, 2021, 35(11): 1364-1365. doi:  10.47037/2020.ACES.J.351151
[84] Liu H Y, Chao Y. The RCS of the 3-D conductor sphere calculated in THz band and the homogeneous magnetized dense plasma sheath-Science Direct [J]. Optik, 2020, 208: 164525. doi:  10.1016/j.ijleo.2020.164525
[85] Evans K F, Stephens G L. A new polarized atmospheric radiative transfer model [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1991, 46(5): 413-423. doi:  10.1016/0022-4073(91)90043-P
[86] Spurr R D. Vlidort: A linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2006, 102(2): 316-342. doi:  10.1016/j.jqsrt.2006.05.005
[87] Thilak V, Voelz D G, Creusere C D. Polarization-based index of refraction and reflection angle estimation for remote sensing applications [J]. Applied Optics, 2007, 46(30): 7527-7536. doi:  10.1364/AO.46.007527
[88] Mayer B. Radiative transfer in the cloudy atmosphere[C]//EPJ Web of Conferences. EDP Sciences, 2009, 1: 75-99.
[89] Schepers D, dBJMJ Aan, Hahne P, et al. Lintran v2.0: A linearised vector radiative transfer model for efficient simulation of satellite-born nadir-viewing reflection measurements of cloudy atmospheres [J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2014, 149: 347-359.
[90] Shaw J A, Pust N J, Dahlberg A R. Continuous outdoor operation of an all-sky polarization imager[C]//Proceedings of SPIE, 2010, 7672: 76720.
[91] Pust N J, Shaw J A. Wavelength dependence of the degree of polarization in cloud-free skies: simulations of real environments [J]. Optics Express, 2012, 20(14): 15559-15568. doi:  10.1364/OE.20.015559
[92] Aycock T, Lompado A, Wolz T, et al. Passive optical sensing of atmospheric polarization for GPS denied operations[C]//Sensors and Systems for Space Applications IX. International Society for Optics and Photonics, 2016, 9838: 98380 Y.
[93] Emde C, Buras-Schnell R, Sterzik M, et al. Influence of aerosols, clouds, and sunglint on polarization spectra of Earthshine [J]. Astronomy & Astrophysics, 2017, 605: A2.
[94] Shaw J A, Eshelman L. Fisheye imaging of sky polarization at the August 2017 solar eclipse[C]//Imaging Systems and Applications, 2020.
[95] Snik F, Bos S P, Brackenhoff S A, et al. Detection of polarization neutral points in observations of the combined corona and sky during the 21 August 2017 total solar eclipse [J]. Applied Optics, 2020, 59(21): F71-F77. doi:  10.1364/AO.391814
[96] Schmolke A, Mallot H A. Polarization compass for robot navigation [C]//Proceedings of Fifth German Workshop on Artificial Life. Lubeck: IOS Press, 2002: 163-167.
[97] Chahl J, Mizutani A. Biomimetic attitude and orientation sensors [J]. IEEE Sensors Journal, 2012, 12(2): 289-297. doi:  10.1109/JSEN.2010.2078806
[98] Barbaresco F, Jeantet A, Meier U. Wake vortex detection & monitoring by X-band Doppler radar: Paris Orly radar campaign[C]//2007 Iet International Conference on Radar Systems, 2007: 83.
[99] Qu Hailong. Study on the radar scattering characteristics of aircraft wake vortex in clear air and moist air[D].Changsha: National University of Defense Technology, 2015. (in Chinese)
[100] Seliga T A, Mead J B. Meter-scale observations of aircraft wake vortices in precipitation using a high resolution solid-state W-band Radar[C]//34h Conference on Radar Meteorology, 2009.
[101] Spuler S M, Richter D, Spowart M P, et al. Optical fiber-based laser remote sensor for airborne measurement of wind velocity and turbulence [J]. Applied Optics, 2011, 50(6): 842-851. doi:  10.1364/AO.50.000842
[102] Inokuchi H, Furuta M, Inagaki T. High altitude turbulence detection using an airborne Doppler lidar[C]//Proceeding of 29 th Congress of the International Council of the Aeronatical Sciences, 2014.
[103] Smalikho I N, Banakh V A, Falits A V, et al. Experimental study of aircraft wake vortices on the airfield of tolmachevo airport in 2018 [J]. Atmospheric and Oceanic Optics, 2020, 33(2): 124-133. doi:  10.1134/S1024856020020116
[104] Guan Qiuqi. Research on the algorithm of oblique aerial camera image defogging[D]. Changchun: Changchun University of Science and Technology, 2017. (in Chinese)
[105] Cheng Jintao. The Analysis of atmosphere scattering to oblique imaging of aerial camera and research of enhancement methods of image quality[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2013. (in Chinese)
[106] Dai Dingdong. Analysis and countermeasures of radar detection problems of hyperspace vehicles under plasma sheath[C]//Chinese Institute of Command and Control, 2021: 7. (in Chinese)
[107] Zhou Yong, Pan Yurong, Li Chunjian. Propagation attenuation of electromagnetic waves in plasma [J]. Modern Radar, 2019, 41(2): 1-6. (in Chinese)
[108] Yan Zhaoai, Hu Xiong, Guo Wenjie, et al. Near space Doppler lidar techniques and applications (Invited) [J]. Infrared and Laser Engineering, 2021, 50(3): 20210100. (in Chinese)
[109] Fan Z, Chen M, Wang B, et al. Three-dimensional attituded information obtained by the skylight polarization pattern [J]. Optics and Precision Engineering, 2016, 24(6): 1248-1256. (in Chinese) doi:  10.3788/OPE.20162406.1248
[110] Fan Chen, Hu Xiaoping, He Xiaofeng, et al. Influence of skylight polarization pattern on bianic polarized orientation and corresponding experiment [J]. Optics and Precision Engineering, 2015, 23(9): 2429-2437. (in Chinese) doi:  10.3788/OPE.20152309.2429
[111] Li Shujun, Jiang Huilin, Zhu Jingping, et al. Development status and key technologies of polarization imaging detection [J]. Chinese Optics, 2013, 6(6): 803-809. (in Chinese)
[112] Chen Jie, Tong Yicheng, Xiao Da, et al. Retrieval methods for extinction-to-backscatter ratio of atmospheric aerosols [J]. Chinese Optics, 2021, 14(6): 1305-1316. (in Chinese) doi:  10.37188/CO.2021-0135
[113] Mackenzie A I. Measured changes in c-band radar reflectivity of clear air caused by aircraft wake vortices[R]. NASA Technical Paper 3671, 1997. (in Chinese)
[114] Niu Fengliang. Study on the radar characteristics of aircraft wake vortices in rainy weather[D]. Changsha: National University of Defense Technology, 2012. (in Chinese)