[1] Zhang Kaisheng, Su Xiuqin, Ye Zhilong. Large relative aperture optical system design for all day star sensor [J]. Acta Photonica Sinica, 2022, 51(11): 1111003. (in Chinese)
[2] 王文杰, 张广军, 魏新国. 全天时星敏感器的建模分析与实验验证[J]. 红外与激光工程, 2019, 48(11): 142–148

Wang Wenjie, Zhang Guangjun, Wei Xinguo. Modeling analysis and experimental verification of all- time star sensor [J]. Infrared and Laser Engineering, 2019, 48(11): 1113001. (in Chinese)
[3] 张辉, 周向东, 汪新梅, 等. 近地空间全天时星敏感器技术现状及发展综述[J]. 航空学报, 2020, 41(08): 19–31

Zhang Hui, Zhou Xiangdong, Wang Xinmei, et al. Current status and development of all-sky time-star sensor in near-earth space [J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 19-31. (in Chinese)
[4] 张前程, 钟胜, 吕劲松, 等. 大视场全天时星敏感器光学系统设计[J]. 红外与激光工程, 2023, 52(3): 234–242

Zhang Qiancheng, Zhong Sheng, Lv Jinsong, et al. Design of optical system for large-field all-sky time star sensor [J]. Infrared and Laser Engineering, 2023, 52(3): 20220583. (in Chinese)
[5] González-fernández C, Hodgkin S T, Irwin M J, et al. The VISTA ZYJHKs photometric system: Calibration from 2 MASS [J]. Monthly Notices of the Royal Astronomical Society, 2018, 474(4): 5459-5478. doi:  10.1093/mnras/stx3073
[6] 胡伟达, 李庆, 陈效双, 等. 具有变革性特征的红外光电探测器[J]. 物理学报, 2019, 68(12): 7–41 doi:  10.7498/aps.68.20190281

Hu Weida, Li Qing, Chen Xiaoshuang, et al. Recent progress on advanced infrared photodetectors [J]. Acta Physica Sinica, 2019, 68(12): 20190281. (in Chinese) doi:  10.7498/aps.68.20190281
[7] 李雪, 龚海梅, 邵秀梅, 等. 短波红外InGaAs焦平面研究进展[J]. 红外与毫米波学报, 2022, 41(01): 129–138 doi:  10.11972/j.issn.1001-9014.2022.01.009

Li Xue, Gong Haimei, Shao Xiumei, et al. Recent advances in short wavelength infrared InGaAs focal plane arrays [J]. Journal of Infrared and Millimeter Waves, 2022, 41(1): 129-138. (in Chinese) doi:  10.11972/j.issn.1001-9014.2022.01.009
[8] Belenkii M. Daytime stellar imager: USA, 7349804[P]. 2008-03-25.
[9] 于春蕾, 龚海梅, 李雪, 等. 2560×2048元短波红外InGaAs焦平面探测器(特邀)[J]. 红外与激光工程, 2022, 51(03): 11–20

Yu Chunlei, Gong Haimei, Li Xue, et al. 2 560×2 048 yuan short-wave infrared InGaAs focal plane detector (invited) [J]. Infrared and Laser Engineering, 2022, 51(3): 20210941. (in Chinese)
[10] Rex M, Chapin E, Devlin M J, et al. BLAST autonomous daytime star cameras [C]//Ground-based and Airborne Instrumentation for Astronomy, SPIE, 2006, 6269: 1093–1100.
[11] Zhu Hailong, Bin Liang, Tao Zhang, et al. Designing considerations for airborne star tracker during daytime [C]//The 27th Chinese Control and Decision Conference (2015 CCDC). Qingdao, China, IEEE, 2015: 4279–4283.
[12] Wang Wenjie. Optical parameters optimization for all-time star sensor [J]. Sensors, 2019, 19(13): 2960. doi:  10.1117/1.1501566
[13] Hughes D W. The introduction of absolute magnitude (1902-1922) [J]. Journal of Astronomical History and Heritage, 2006, 9: 173-179. doi:  10.3724/SP.J.1440-2807.2006.02.06
[14] Schulman E, Caroline V C. Misconceptions about astronomical magnitudes [J]. American Journal of Physics, 1997, 65(10): 1003-1007. doi:  10.1119/1.18714
[15] Cochran A L. Spectrophotometry with a self-scanned silicon photodiode array-II-secondary standard stars [J]. The Astrophysical Journal Supplement Series, 1981, 45: 83-96. doi:  10.1086/190708
[16] Bessell M S. Photometric systems [J]. International Astronomical Union Colloquium, 1993, 136: 22-39. doi:  10.1017/S025292110000734X
[17] Casagrande L, VandenBerg D A. Synthetic stellar photometry – II testing the bolometric flux scale and tables of bolometric corrections for the Hipparcos/Tycho, Pan-STARRS1, SkyMapper, and JWST systems [J]. Monthly Notices of the Royal Astronomical Society, 2018, 475(4): 5023-5040. doi:  10.1093/mnras/sty149
[18] Andrew W, Kaspar von Braun. Revised filter profiles and zero points for broadband photometry [J]. Publications of the Astronomical Society of the Pacific, 2015, 127(948): 102-125. doi:  10.1086/680012
[19] Bessell M S. The Hipparcos and Tycho photometric system passbands [J]. Publications of the Astronomical Society of the Pacific, IOP Publishing, 2000, 112(773): 961. doi:  10.1086/316598
[20] Bilir S, Ak S, Karaali S, et al. Transformations between 2 MASS, SDSS and BVRI photometric systems: Bridging the near-infrared and optical [J]. Monthly Notices of the Royal Astronomical Society, 2008, 384(3): 1178-1188. doi:  10.1111/j.1365-2966.2007.12783.x
[21] Maíz Apellániz J. A uniform set of optical/NIR photometric zero points to be used with CHORIZOS[C]//The Future of Photometric, Spectrophotometric and Polarimetric Standardization, 2007, 364: 227.
[22] Bessell M, Murphy S. Spectrophotometric libraries, revised photonic passbands, and zero points for UBVRI, hipparcos, and tycho photometry [J]. Publications of the Astronomical Society of the Pacific, 2012, 124(912): 140-157. doi:  10.1086/664083
[23] Wang Ruwen, Xie Pinhua, Xu Jin, et al. Retrieve of water vapor column density in atmosphere based on near infrared differential optical absorption spectroscopy [J]. Acta Optica Sinica, 2019, 39(2): 0201001. (in Chinese) doi:  10.3788/AOS201939.0201001
[24] Rogalski A. Next decade in infrared detectors[C]//Electro-Optical and Infrared Systems: Technology and Applications XIV, SPIE, 2017, 10433: 128-152.
[25] Wenjie Wang, Xinguo Wei, Jian Li, et al. Noise suppression algorithm of short-wave infrared star image for daytime star sensor [J]. Infrared Physics & Technology, 2017, 85: 382-394.
[26] Zheng Xunjiang, Huang Yongqin, Mao Xiaonan, et al. Research status and key technologies of all-day star sensor [J]. Journal of Physics: Conference Series, 2020, 1510(1): 012027. doi:  10.1088/1742-6596/1510/1/012027
[27] Nicholas A, Truesdale, Dinkel K J, et al. DayStar: Modeling and test results of a balloon-borne daytime star tracker [C]//2013 IEEE Aerospace Conference, IEEE, 2013: 1–12.
[28] Tola Engin. Black-body SNR formulation of astronomical camera systems [J]. IEEE Sensors Journal, 2015, 15(9): 4941-4949. doi:  10.1109/JSEN.2015.2427911