[1] 唐华, 沈咏, 龙丽媛. 国家自然科学基金视角下我国激光科学技术发展的分析和展望[J]. 中国激光, 2023, 50(2): 0200001. doi:  10.3788/CJL221164.

Tang Hua, Shen Yong, Long Liyuan. Analysis and prospect of the development of the laser science and technology in China from the perspective of national science [J]. Chinese Journal of Lasers, 2023, 50(2): 0200001. (in Chinese) doi:  10.3788/CJL221164
[2] Snitzer E, Po H, Hakimi F, et al. Double-clad, offset core Nd fiber laser[C]//Optical Fiber Sensors, 1988.
[3] 周朴, 黄良金, 冷进勇, 等. 高功率双包层光纤激光器: 30周年的发展历程[J]. 中国科学: 技术科学, 2020(2): 13. doi:doi: 10.1360/N092018-00409.

Zhou Pu, Huang Liangjin, Leng Jinyong, et al. High-power double-cladding fiber lasers: A 30-year overview [J]. Scientia Sinica Technologica, 2020, 50(2): 123-135. (in Chinese) doi:  10.1360/N092018-00409
[4] Jeong Y, Sahu J K, Payne D N, et al. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power [J]. Optics Express, 2004, 12(25): 6088-6092. doi:  10.1364/OPEX.12.006088
[5] 董孝义. 掺杂光纤激光器与放大器[J]. 激光与红外, 1990, 20(3): 7. doi:  CNKI:SUN:JGHW.0.1990-03-003.

Dong Xiaoyi. Doped fiber lasers and amplifiers [J]. Laser & Infrared, 1990, 20(3): 17-23. (in Chinese)
[6] 崔国琪, 董孝义, 张建忠, 等. 掺杂光纤激光特性分析[J]. 光电子·激光, 1990(05): 42-47+51. doi: CNKI:SUN:GDZJ.0.1990-05-009.

Cui Guoqi, Dong Xiaoyi, Zhang Jianzhong, et al. Analysis of doped fiber characteristics [J]. Optronics·Lasers, 1990, 1(5): 290-295, 299. (in Chinese) doi:  10.16136/j.joel.1990.05.009
[7] 陈一竑, 程瑞华, 干福熹. Ar离子激光泵浦的掺Nd光纤激光特性[J]. 科学通报, 1991, 36(20): 1539-1541. doi:  10.1360/csb1991-36-20-1539.

Chen Yihong, Cheng Ruihua, Gan Fuxi. Nd-doped fiber laser characteristics of AR ion laser pumping [J]. Chinese Science Bulletin, 1991, 36(20): 1539-1541. (in Chinese) doi:  10.1360/csb1991-36-20-1539
[8] 宁继平, 何志宏, 刘宏伟, 等. 掺铒光纤激光放大的研究[J]. 光学学报, 1992, 12(8): 678-683. doi:doi: CNKI:SUN:GXXB.0.1992-08-001.

Ning Jiping, He Zhihong, Liu Hongwei, et al. Study of erbium-doped fiber amplifiers [J]. Acta Optica Sinica, 1992, 12(8): 678-683. (in Chinese) doi:  10.3321/j.issn:0253-2239.1992.08.003
[9] 陈一竑, 程瑞华, 沈红卫, 等. 掺Nd石英单模光纤1.088μm连续光纤激光[J]. 中国激光, 1992, 19(10): 788-789. doi: CNKI:SUN:JJZZ.0.1992-10-015.

Chen Yihong, Cheng Ruihua, Shen Hongwei, et al. Doped Nd quartz single-mode fiber 1.088 μm continuous fiber laser [J]. Chinese Journal of Lasers, 1990, 19(11): 664-789. (in Chinese) doi:  10.3321/j.issn:0258-7025.1990.11.005
[10] 秦大甲. 双包层光纤使光纤激光器线性输出功率增高[J]. 光纤与电缆及其应用技术, 1996(02): 36. doi:  10.19467/j.cnki.1006-1908.1996.02.010.

Qin Dajia. Double-clad fibers increase the linear output power of fiber lasers [J]. Optical Fiber & Electric Cable and Their Applications, 1996(2): 36. (in Chinese) doi:  10.19467/j.cnki.1006-1908.1996.02.010
[11] 从征. 光纤激光系统的光辉未来[J]. 激光与光电子学进展, 1998(10): 6-9. doi: CNKI: SUN:JGDJ.0.1998-10-001.

Cong Zheng. The bright future of fiber laser systems [J]. Laser & Optoelectronics Progress, 1998, 35(10): 6-9. (in Chinese)
[12] 明海, 杨宝, 董小鹏, 等. 掺Nd3+双包层光纤的泵浦波长及其光谱特性的研究[J]. 科学通报, 1997(04): 365-368. doi:  10.1360/csb1997-42-4-365.

Ming Hai, Yang Bao, Dong Xiaopeng, et al. Study on pump wavelength and spectral characteristics of Nd3+ double-clad fiber [J]. Chinese Science Bulletin, 1997(4): 365-368. (in Chinese) doi:  10.1360/csb1997-42-4-365
[13] 尹红兵, 李诗愈, 程淑玲, 等. 掺Yb3+石英光纤的制备及其激光性能[J]. 光通信研究, 1999(05): 23-26. doi: 10.13756/j.gtxyj.1999.05.006.

Yin Hongbing, Li Shiyu, Cheng Shuling, et al. Preparation of Yb3+ doped quartz fiber and its laser performance [J]. Study on Optical Communications, 1999(5): 23-26. (in Chinese) doi:  10.13756/j.gtxyj.1999.05.006
[14] 吕可诚, 刘伟伟, 吕福云, 等. 包层泵浦光纤激光器[J]. 中国科学基金, 1999, 13(5): 288-292. doi: CNKI: SUN:ZKJJ.0.1999-05-012.

Lv Kecheng, Liu Weiwei, Lv Fuyun, et al. Cladding pumping fiber laser [J]. Bulletin of National Science Foundation of China, 1999, 13(5): 288-292. (in Chinese) doi:  10.16262/j.cnki.1000-8217.1999.05.013
[15] 陈柏, 陈兰荣, 林尊琪, 等. LD抽运的掺Yb3+双包层光纤激光器[J]. 中国激光, 2000, 27(2): 101-104.

Chen Bai, Chen Lanrong, Lin Zunqi, et al. LD pumped Yb3+-doped double-cladding fiber laser [J]. Chinese Journal of Lasers, 2000, 27(2): 101-104. (in Chinese)
[16] 宁鼎, 傅成鹏, 丁镭, 等. 掺Yb3+双包层光纤激光器的实验研究[J]. 光子学报, 2001, 30(4): 442-445. doi:  CNKI:SUN:GZXB.0.2001-04-014.

Ning Ding, Fu Chengpeng, Ding Lei, et al. Experimental study of Yb3+-doped double-clad fiber laser [J]. Acta Photonica Sinica, 2001, 30(4): 442-445. (in Chinese)
[17] 孙迭篪, 胡谊梅, 梁建中, 等. 掺镱双包层光纤激光器研究[J]. 光通信研究, 2000(5): 40-42. doi:  10.3969/j.issn.1005-8788.2000.05.008.

Sun Diechi, Hu Yimei, Liang Jianzhong, et al. Research on Yb doped double clad fiber laser [J]. Study on Communications, 2000(5): 40-42. (in Chinese) doi:  10.3969/j.issn.1005-8788.2000.05.008
[18] 常国庆. 激光引导人生——访《光电产品与资讯》前主编楼祺洪先生[EB/OL]. 中国激光杂志社公众号, (2020-04-27)[2023-02-14]. https://mp.weixin.qq.com/s/IEAD7VhdOmWRdx4xWx-x3A.
[19] 楼祺洪, 周军, 李铁军, 等. 4.9 W掺镱双包层光纤激光器[J]. 中国激光, 2002(04): 306. doi:  10.3321/j.issn:0258-7025.2002.04.025.

Lou Qihong, Zhou Jun, Li Tiejun, et al. 4.9 W ytterbium-doped double-clad fiber laser [J]. Chinese Journal of Lasers, 2002, A29(4): 306. (in Chinese) doi:  10.3321/j.issn:0258-7025.2002.04.025
[20] 吕可诚, 苏红新, 李乙钢, 等. 瓦量级全光纤掺Yb双包层光纤激光器[J]. 中国激光, 2002, 29(7): 604-604. doi:  10.3321/j.issn:0258-7025.2002.07.023.

Lv Kecheng, Su Hongxin, Li Yigang, et al. Wattage all-fiber doped Yb double-clad fiber laser [J]. Chinese Journal of Lasers, 2002, 29(7): 604. (in Chinese) doi:  10.3321/j.issn:0258-7025.2002.07.023
[21] 张强, 范万德, 付圣贵, 等. 以双包层光纤光栅为后腔镜的掺Yb3+双包层光纤激光器的研究[J]. 南开大学学报: 自然科学版, 2006, 39(1): 67-69. doi:  10.3969/j.issn.0465-7942.2006.01.013.

Zhang Qiang, Fan Wande, Fu Shenggui, et al. Study on Yb3+-doped double-clad fiber laser with double-clad fiber Bragg grating as back cavity mirror [J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2006, 39(1): 67-69. (in Chinese) doi:  10.3969/j.issn.0465-7942.2006.01.013
[22] 李晨, 闫平, 陈刚, 等. 采用国产掺镱双包层光纤的光纤激光器连续输出功率突破700 W[J]. 中国激光, 2006, 33(6): 738-738. doi: 10.1016/S0379-4172(06)60085-1.

Li Chen, Yan Ping, Chen Gang, et al. The continuous output power of fiber lasers using domestic ytterbium-doped double-clad fibers exceeds 700 W [J]. Chinese Journal of Lasers, 2006, 33(6): 738-738. (in Chinese) doi:  10.1016/S0379-4172(06)60085-1
[23] 周军, 楼祺洪, 朱健强, 等. 采用国产大模场面积双包层光纤的714 W连续光纤激光器[J]. 光学学报, 2006, 26(7): 1119-1120. doi:  10.3321/j.issn:0253-2239.2006.07.032.

Zhou Jun, Lou Qihong, Zhu Jianqiang, et al. A continuous-wave 714 w fiber laser with China-made large-mode-area double-clad fiber [J]. Acta Optica Sinica, 2006, 26(7): 1119-1120. (in Chinese) doi:  10.3321/j.issn:0253-2239.2006.07.032
[24] 赵鸿, 周寿桓, 朱辰, 等. 大功率光纤激光器输出功率超过1.2 kW[J]. 激光与红外, 2006, 36(10): 930-930. doi: CNKI:SUN:JJZZ.0.2006-10-014.

Zhao Hong, Zhou Shouhuan, Zhu Chen, et al. The output power of high-power fiber lasers exceeds 1.2 kW [J]. Laser & Infrared, 2006, 36(10): 930. (in Chinese) doi:  10.3969/j.issn.1001-5078.2006.10.027
[25] 李伟, 武子淳, 陈曦, 等. 大功率光纤激光器输出功率突破1 kW [J]. 强激光与粒子束, 2006, 18 (6): 890.

Li Wei, Wu Zichun, Chen Xi, et al. The output power of high-power fiber laser exceeded 1 kW [J]. High Power Laser and Particle Beams, 2006, 18(6): 890. (in Chinese)
[26] 周朴, 冷进勇, 肖虎, 等. 高平均功率光纤激光的研究进展与发展趋势[J]. 中国激光, 2021, 48(20): 1-26. doi:  10.3788/CJL202148.2000001.

Zhou Pu, Leng Jinyong, Xiao Hu, et al. High average power fiber lasers: research progress and future prospect [J]. Chinese Journal of Lasers, 2021, 48(20): 2000001. (in Chinese) doi:  10.3788/CJL202148.2000001
[27] Xu S H, Yang Z M, Zhang W N, et al. 400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser [J]. Optics Letters, 2011, 36(18): 3708-3710. doi:  10.1364/OL.36.003708
[28] Zhang L, Cui S, Liu C, et al. 170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier [J]. Optics Express, 2013, 21(5): 5456-5462. doi:  10.1364/OE.21.005456
[29] Liu J, Shi H, Liu K, et al. 210 W single-frequency, single-polarization, thulium-doped all-fiber MOPA [J]. Optics Express, 2014, 22(11): 13572-13578. doi:  10.1364/OE.22.013572
[30] Xu Y, Fang Q, Qin Y, et al. 2 kW narrow spectral width monolithic continuous wave in a near-diffraction-limited fiber laser [J]. Applied Optics, 2015, 54(32): 9419-9421. doi:  10.1364/AO.54.009419
[31] Xiao Q, Yan P, Wang Y, et al. High-power all-fiber superfluorescent source with fused angle-polished side-pumping configuration [J]. Applied Optics, 2011, 50(8): 1164-1169. doi:  10.1364/AO.50.001164
[32] Xu J, Ye J, Hu X, et al. In-band pumping avenue based high power superfluorescent fiber source with record power and near-diffraction-limited beam quality [J]. High Power Laser Science and Engineering, 2018, 6(3): 6. doi:  10.1017/hpl.2018.43
[33] Song R, Hou J, Chen S, et al. High power supercontinuum generation in a nonlinear ytterbium-doped fiber amplifier [J]. Optics Letters, 2012, 37(9): 1529-1531. doi:  10.1364/OL.37.001529
[34] Yan F. High Power Raman Fiber Lasers: Recent Progress[C]// Frontiers in Optics, 2015: FTh2F.1.
[35] Ma Y, Wang X, Leng J, et al. Coherent beam combination of 1.08 kW fiber amplifier array using single frequency dithering technique [J]. Optics Letters, 2011, 36(6): 951-953. doi:  10.1364/OL.36.000951
[36] 楼祺洪. 高功率光纤激光器及其应用[M]. 中国科学技术大学出版社, 2010.

Lou Qihong. High Power Fiber Laser and Its Applications[M]. Hefei: University of Science and Technology of China Press, 2010. (in Chinese)
[37] 上海光学精密机械研究所. 中国激光杂志社在慕尼黑上海光博会举办系列活动[EB/OL]. (2012-03-26)[2023-02-10]. https://www.cas.cn/hy/xshd/201203/t20120327_3518580.shtml.
[38] Admin. 国际高功率光纤激光技术研究及应用研讨会[EB/OL]. (2012-02-17)[2023-02-10]. https://www.portalaser.com.cn/htm/fair/zhnews/1378.html.
[39] Aconf . 第二十二届全国激光学术会议[EB/OL]. (2016)[2023-02-10]. https://www.aconf.org/conf_73094.html.
[40] 周军, 王璞, 周朴. “高功率光纤激光技术”专题前言[J]. 中国激光, 2017, 44(2): 1-2. doi: CNKI: SUN:JJZZ.0.2017-02-001.

Zhou Jun, Wang Pu, Zhou Pu. Foreword to the topic "High Power Fiber Laser Technology" [J]. Chinese Journal of Lasers, 2017, 44(2): 0201000. (in Chinese) doi:  10.3788/CJL201744.01
[41] Chen X, Yao T, Huang L, et al. Functional fibers and functional fiber-based components for high-power lasers [J]. Advanced Fiber Materials, 2022, 5(1): 59-106. doi:  10.1007/s42765-022-00219-7
[42] 周朴. 高平均功率光纤激光技术基础: (2)谐振腔[J]. 强激光与粒子束, 2017, 29(10): 9-19. doi:  10.11884/hplpb201729.170182.

Zhou Pu. Fundamentals of high-average-power fiber laser technology: (ii) oscillation cavity [J]. High Power Laser and Particle Beams, 2017, 29(10): 100202. (in Chinese) doi:  10.11884/hplpb201729.170182
[43] Tao R, Wang X, Zhou P. Comprehensive theoretical study of mode instability in high-power fiber lasers by employing a universal model and its implications [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(3): 0903319. doi:  10.1109/JSTQE.2018.2811909
[44] Jiang M, Wu, H, An Y, et al. Fiber laser development enabled by machine learning: review and prospect [J]. PhotoniX, 2022, 3(1): 1-27. doi:  10.1186/s43074-022-00055-3
[45] 李峰云, 黎玥, 宋华青, 等. 全国产光纤材料器件实现高SRS抑制比20.88 kW输出[J]. 中国激光, 2021, 48(21): 186-187. doi:  10.3321/j.issn.0258-7025.2021.21.zgjg202121022

Li Fengyun, Li Yue, Song Qinghua, et al. Nationwide optical fiber material devices achieve a high SRS rejection ratio of 20.88 kW output [J]. Chinese Journal of Lasers, 2021, 48(21): 2116002. (in Chinese) doi:  10.3321/j.issn.0258-7025.2021.21.zgjg202121022
[46] 肖虎, 潘志勇, 陈子伦, 等. 基于自研光纤和器件实现20 kW高光束质量激光稳定输出[J]. 中国激光, 2022, 49(16): 2.

Xiao Hu, Pan Zhiyong, Chen Zilun, et al. Based on self-developed optical fiber and device, the stable output of 20 kW high beam quality laser is realized [J]. Chinese Journal of Lasers, 2022, 49(16): 1616002. (in Chinese)
[47] 衣永青, 刘君, 沈一泽, 等. 国产两万瓦级同带泵浦掺镱双包层光纤[J]. 中国激光, 2022(007): 049. doi:  2022(007):049.

Yi Yongqing, Liu Jun, Shen Yize, et al. Homemade 20 kW Yb-doped double-cladding fiber for tandem pumping [J]. Chinese Journal of Lasers, 2022, 49(7): 0706002. (in Chinese)
[48] 林傲祥, 肖起榕, 倪力, 等. 国产YDF有源光纤实现单纤20 kW激光输出[J]. 中国激光, 2021, 48(9): 227-227. doi:  10.3772/j.issn.1009-5659.2021.13.004.

Lin Aoxiang, Xiao Qirong, Ni Li, et al. Domestic YDF active fiber achieves single-fiber 20 kW laser output [J]. Chinese Journal of Lasers, 2021, 48(9): 0916003. (in Chinese) doi:  10.3772/j.issn.1009-5659.2021.13.004
[49] 张磊, 楼风光, 王孟, 等. 同带泵浦的万瓦级三包层掺镱光纤[J]. 中国激光, 2021, 48(13): 4. doi:  10.3788/CJL202148.1315001.

Zhang Lei, Lou Fengguang, Wang Meng, et al. Yb-doped triple-clad fiber for nearly10 kW level tandem-pumped output [J]. Chinese Journal of Lasers, 2021, 48(13): 1315001. (in Chinese) doi:  10.3788/CJL202148.1315001
[50] Sun J, Liu L, Han L, et al. 100 kW ultra high power fiber laser [J]. Optics Continuum, 2022, 1(9): 1932-1938. doi:  10.1364/OPTCON.465836
[51] 王小林, 吕品, 张汉伟, 等. 光纤激光仿真软件See Fiber Laser与光纤激光工具集SFTool [J]. 中国激光, 2017, 44(5): 8. doi:  10.3788/CJL201744.0506002.

Wang Xiaolin, Lv Pin, Zhang Hanwei, et al. Fiber Laser simulation software see fiber laser and fiber laser tool collection SFTool [J]. Chinese Journal of Lasers, 2017, 44(5): 0506002. (in Chinese) doi:  10.3788/CJL201744.0506002
[52] 周朴, 何兵. "光纤激光光束合成"专栏序言[J]. 红外与激光工程, 2018, 47(1): 1. doi:  CNKI:SUN:HWYJ.0.2018-01-003.

Zhou Pu, He Bing. Preface to the column "Fiber Laser Beam Synthesis" [J]. Infrared and Laser Engineering, 2018, 47(1): 1. (in Chinese)
[53] 江澄. 《2021中国激光产业发展报告》发布[EB/OL]. (2021-04-06)[2023-02-10]. https://www.cas.cn/yx/202104/t20210402_47-83655.shtml.
[54] 武汉文献情报中心. 武汉文献中心在线直播发布《2022中国激光产业发展报告》[EB/OL]. (2022-04-01)[2023-02-10]. https://www.whb.cas.cn/xw/gzdt/202204/t20220401_6417983.html.
[55] IPG Photonics. IPG Photonics successfully tests world’s first 10 kilowatt single-mode production laser [EB/OL]. (2009-06-15)[2023-02-10]. https://www.ipgphotonics.com/Collateral/Do-cuments/English-US/PR_FinaI_10kW_SM_laser.pdf
[56] Ehrenreich T, Leveille R, Majid I, et al. 1-kW, all-glass Tm: fiber laser[C]//SPIE Conference on Fiber lasers VII. 2010, 7580: 758016.
[57] Wan P, Yang L M, Liu J. All fiber-based Yb-doped high energy, high power femtosecond fiber lasers [J]. Optics Express, 2013, 21(24): 29854-29859. doi:  10.1364/OE.21.029854
[58] Yigit, Ozan, Aydin, et al. Towards power scaling of 2.8 μm fiber lasers. [J]. Optics Letters, 2018, 43(18): 4542-4545. doi:  10.1364/OL.43.004542
[59] Agrawal G. Nonlinear Fiber Optics [M]. 6th ed. Cambridge, Massachusetts: Academic Press, 2019.
[60] Agrawal G. Nonlinear Fiber Optics[M]. 5th ed. Translated by Jia Dongfang, Ge Chunfeng. Beijing: Publishing House of Elec-tronics Industry, 2014. (in Chinese)
[61] Jauregui C, Stihler C, Limpert J. Transverse Mode Instability [J]. Advances in Optics and Photonics, 2020, 12(2): 429-484. doi:  10.1364/AOP.385184
[62] Turitsyn S K, Bednyakova A E, Fedoruk M P, et al. Inverse four-wave mixing and self-parametric amplification in optical fibre [J]. Nature Photonics, 2015, 9(9): 608-614. doi:  10.1038/nphoton.2015.150
[63] Wright L G, Sidorenko P, Pourbeyram H, et al. Mechanisms of spatiotemporal mode-locking [J]. Nature Physics, 2020, 16(5): 565-570. doi:  10.1038/s41567-020-0784-1
[64] Wright L G, Christodoulides D N, Wise F W. Spatiotemporal mode-locking in multimode fiber lasers [J]. Science, 2017, 358(6359): 94-97. doi:  10.1126/science.aao0831
[65] Turitsyna E G, Smirnov S V, Sugavanam S, et al. The laminar-turbulent transition in a fibre laser [J]. Nature Photonics, 2013, 7(10): 783-786. doi:  10.1038/NPHOTON.2013.246
[66] Peng J, Zhao Z, Boscolo S, et al. Breather molecular complexes in a passively mode-locked fibre laser [J]. Laser & Photonics Reviews, 2021, 15(7): 2000132. doi:  10.1002/lpor.202000132
[67] Liu M, Wei Z, Li H, et al. Invisible the "invisible" soliton pulsation in an ultrafast laser [J]. Laser & Photonics Reviews, 2020, 14(4): 1900317. doi:  https://doi.org/10.1002/lpor.201900317
[68] Ding Y, Xiao X, Liu K, et al. Spatiotemporal mode-locking in lasers with large modal dispersion [J]. Physical Review Letters, 2021, 126(9): 093901. doi:  10.1103/PHYSREVLETT.126.093901
[69] Ye J, Ma X, Zhang Y, et al. From spectral broadening to recompression: dynamics of incoherent optical waves propagating in the fiber [J]. PhotoniX, 2021, 2(1): 1-15. doi:  10.1186/s43074-021-00037-x
[70] Liu W, Ma P, Zhou P. Unified model for spectral and temporal properties of quasi-CW fiber lasers [J]. Journal of the Optical Society of America B: Optical Physics, 2021, 38(12): 3663-3682. doi:  10.1364/JOSAB.439829
[71] Ter-Mikirtychev V V. Fundamentals of Fiber Lasers and Fiber Amplifiers [M]. Heidelberg: Springer International Publishing, 2019.
[72] Bale B G, Okhitnikov O G, Turitsyn S K. Modeling and Technologies of Ultrafast Fiber Lasers[M]//Fiber Lasers. Berlin: Wiley-VCH Verlag GmbH & Co. KGaA, 2012: 135-175.
[73] Khajavikhan M, Leger J R. Modal Theory of Coupled Resonators for External Cavity Beam Combining[M]. Berlin: Wiley‐VCH Verlag GmbH & Co. KGaA, 2013.
[74] Dong L, Samson B. Fiber Lasers: Basics, Technology, and Applications [M]. Boca Raton: CRC Press, 2016.
[75] Binh L, Ngo N. Ultra-Fast Fiber Lasers: Principles and Appli-cations with MATLAB Models [M]. Boca Raton: CRC Press, 2011.
[76] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives [Invited] [J]. Journal of the Optical Society of America B, 2010, 27(11): B63-B92. doi:  10.1364/JOSAB.27.000B63
[77] Zervas M N, Codemard C A. High power fiber lasers: A review [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 219-241. doi:  10.1109/JSTQE.2014.2321279
[78] Glebov A L, Leisher P O, Platonov N, et al. 1.5 kW linear polarized on PM fiber and 2 kW on non-PM fiber narrow linewidth CW diffraction-limited fiber amplifier[C]//SPIE, 2017, 10085: 100850M.
[79] Shcherbakov E, Fomin V, Abramov A, et al. Industrial grade 100 kW power CW fiber laser[C]//Advanced Solid State Lasers: Applications II, 2013: ATh4A.2.
[80] Goodno G D. Linewidth narrowing of a high power polarization maintaining fiber amplifier using nonlinear phase demodulation[C]//2021 Conference on Lasers and Electro-Optics (CLEO), 2021: SM4K.1
[81] 周朴. 当人工智能遇见激光[C]//第十七届全国激光技术与光电子学学术会议 (LTO2022), 2022.