[1] International Electrotechnical Commission. Safety of laser products-Part 1: Equipment classification and requirments (IEC 60825-1:2014) [S/OL]. (2020-09-15)[2023-05-08]. https://wcbst ore.iec.ch/publication/3587.
[2] Wang K O, Gao C Q, Lin Z F, et al. 1 645 nm coherent Doppler wind lidar with a single-frequency Er: YAG laser [J]. Optics Express, 2020, 28(10): 14694-14704. doi:  10.1364/OE.392092
[3] Kameyama S, Imaki M, Hirano Y, et al. Development of 1.6 µm continuous-wave modulation hard-target differential absorption lidar system for CO2 sensing [J]. Optics Letters, 2009, 34: 1513-1515. doi:  10.1364/ol.34.00113
[4] Shang X, Xia H, Dou X K, et al. Adaptive inversion algorithm for 1.5 μm visibility lidar incorporating in situ angstrom wavelength exponent [J]. Optics Communications, 2018, 418: 129-134. doi:  10.1016/j.optcom.2018.03.09
[5] Li Kuan, Ben Tingwei, Wu Chunting, et al. Development of 1.6-μm Er: YAG solid-state laser for lidar [J]. Microwave & Optical Technology Letters, 2023, 5(65): 1512-1534. doi:  10.1002/mop.33625
[6] Hintikka M, Kostamovaara J. Experimental investigation into laser ranging with sub-ns laser pulses [J]. IEEE Sensors Journal, 2018, 18(3): 1047-1053. doi:  10.1109/JSEN.2017.2777501
[7] Liu H, Zhang Y, Sun K, et al. Pose measurement of robot arm end based on laser range finders[C]//IEEE International Conference on Advanced Intelligent Mechatronics, 2015: 1224-1228.
[8] Li Tingquan. Research on key technology of eye-safe laser ranging [D]. Chengdu: Sichuan University of Electronic Science and Technology of China, 2018. (in Chinese)
[9] Zhang Wei. Research on 1.57 μm eye-safe laser [D]. Changchun: Changchun University of Science and Technology, 2013. (in Chinese)
[10] Steinvall O, Persson R, Berglund F, et al. Using an eyesafe military laser range finder for atmospheric sensing[C]//Proceedings of the SPIE, 2014, 9080: 90800W.
[11] Boucher J F, Callahan J J. Ultra-high-intensity 1550-nm single junction pulsed laser diodes [C]//Laser Technology for Defense and Security VII, 2011, 8039: 1-9.
[12] 刘莉萍. 1.57 μm OPO人眼安全激光技术的军用前景分析[J]. 激光与红外, 2003, 33(4): 300-303. doi:  10.1117/12.2049044.

Liu Liping. 57 μm OPO eye-safe laser. [J]. Laser & Infrared, 2003, 33(4): 300-303. (in Chinese) doi:  10.1117/12.2049044
[13] Huber G, Kränkel C, Petermann K. Solid-state lasers: status and future [Invited] [J]. Journal of the Optical Society of America B, 2010, 27(11): 93-105. doi:  org/10.1364/JOSAB.27.000B93
[14] Yasukuni Shibata, Chikao Nagasawa, Makoto Abo. Development of 1.6 μm DIAL using an OPG/OPA transmitter for measuring atmospheric CO2 concentration profiles [J]. Applied Optics, 2017, 56(4): 1194-1201. doi:  10.1364/AO.56.001194
[15] 蔡向龙, 李仲慧, 刘栋, 等. 基于氘气受激拉曼散射的1.6 μm波段大能量脉冲激光研究[J]. 中国激光, 2022, 49(11): P7-16. doi. 10.3788/CJL202249.110100. doi:  10.3788/CJL202249.110100

Cai Xianglong, Li Zhanghui, Liu Dong, et al. High energy pulsed laser in 1.6 μm waveband based on deuterium gas stimulated Raman scattering [J]. Chinese Journal of Lasers, 2022, 49(11): 1101001. (in Chinese) doi:  10.3788/CJL202249.110100
[16] Frank F W, Pierce J W. A high peak power, compact, eye-safe optical parametric oscillator system[C]//Proceedings of the SPIE, 2010, 7582: 75820H.
[17] 宋睿, 李尚桦, 陈朝勇, 等. 1645 nm 单频脉冲 Er∶YAG 陶瓷激光器[J]. 中国激光, 2021, 48(5): 102853. doi. 10.1016/j. rinp. 2019.10285 3.

Song Rui, Li Shanghua, Chen Chaoyong, et al. 1645-nm single-frequency pulsed Er∶YAG ceramic Laser [J]. Chinese Journal of Lasers, 2021, 48(5): 0501012. (in Chinese)
[18] Li Yuqi, Bai Zhenxu, Chen Hui, et al. Eye-safe diamond Raman laser [J]. Results in Physics, 2020, 16: 102853. doi:  10.1016/j.rinp.2019.102853
[19] Fornasiero L, Petermann K, Heumann E, et al. Spectroscopic properties and laser emission of Er3+ in scandium silicates near 1.5 μm [J]. Optical Materials, 1998, 10(1): 9-17. doi:  10.1016/S0925-3467(97)00148-1
[20] Setzle S D, Francis M P, Young Y E, et al. Resonantly pumped eyesafe erbium lasers [J]. EEE Journal of Selected Topics in Quantum Electronics, 2005, 11(3): 645-657. doi:  10.1109/JSTQE.2005.850249
[21] Jebali M A, Maran J N, Larochelle S. 264 W output power at 1585 nm in Er-Yb codoped fiber laser using in-band pumping [J]. Opt Lett, 2014, 39(13): 3974-3977. doi:  10.1364/OL.39.004033
[22] Lin H, Feng Y, Barua P, et al. 405 W erbium-doped large-core fiber laser[C]//OSA: Advanced Solid State Lasers (2017), 2017: Article ATh4A-2.
[23] Larat C, Schwarz M, Lallier E, et al. 120 mJ Q-switched Er:YAG laser at 1645 nm [J]. Optics Express, 2014, 22(5): 4861-4866. doi:  10.1364/OE.22.004861
[24] Yao B Q, Deng Y, Dai T Y, et al. Single-frequency, injection-seeded Er:YAG laser based on a bow-tie ring slave resonator [J]. Quantum Electronics, 2015, 45(8): 709-712. doi:  10.1070/QE2015v045n08ABEH015605
[25] Gao Chunqing, Shi Yang, Ye Qing, et al. 10 mJ single-frequency, injection-seeded Q-switched Er:YAG laser pumped by a 1470 nm fiber-coupled LD [J]. Laser Physics Letters, 2018, 15(2): 025003. doi:  10.1088/1612-202X/aa9ac6
[26] Yang Shi, Gao Chunqing, Wang Shuo, et al. High-energy, single-frequency, Q-switched Er:YAG laser with a double-crystals-end-pumping architecture [J]. Optics Express, 2019, 27(3): 2671-2680. doi:  10.1364/OE.27.002671
[27] Li Shanghua, Wang Qing, Song Rui, et al. Laser diode pumped high-energy single-frequency Er:YAG laser with hundreds of nanoseconds pulse duration [J]. Chinese Optics Letters, 2020, 3(18): 44-48. doi:  10.1364/COL.18.031401
[28] Guo Baoping, Josh Foster, Susanne Lee, et al. Q-switched, high energy, high repetition rate, mini-laser transmitters at 1.54 μm [C]//Proceedings of the SPIE, 2023, 12399: 1239908.
[29] 石顺祥, 陈国夫, 赵卫, 等. 非线性光学 [M]. 西安: 西安电子科技大学出版社, 2003.
[30] Chen X H, Li P, Zhang X Y, et al. Eye-safe Raman laser at 1 532 nm with BaWO4 crystal [J]. Laser Physics, 2011, 21(12): 2040-2044. doi:  10.1134/S1054660X1121002X
[31] Shen Hongbin, Wang Qingpu, Li Ping, et al. Diode-side-pumped Nd:YAG/BaWO4 dual-wavelength Raman laser emitting at 1 502 and 1 527 nm [J]. Optics Communications, 2013, 306: 165-169. doi:  10.1016/j.optcom.2013.05.051
[32] Fan Y X, Liu Y, Duan Y H, et al. High-efficiency eye-safe intracavity Raman laser at 1531 nm with SrWO4 crystal [J]. Applied Physics B, 2008, 93(2-3): 327-330. doi:  10.1007/s00340-008-3165-5
[33] Takei N, Suzuki S, Kannari F. 20 Hz operation of an eye-safe cascade Raman laser with a Ba(NO3)2 crystal [J]. Applied Physics B, 2002, 74(6): 521-527. doi:  10.1007/s003400200832
[34] Shpak P V, Voitikov S V, Chulkov R V, et al. Passively Q-switched diode-pumped Raman laser with third-order Stokes eye-safe oscillation [J]. Optics Communications, 2012, 285(17): 3659-3664. doi:  10.1016/j.optcom.2012.04.048
[35] Wu Qian, Gao Zeliang, Yan Bingzheng, et al. A novel multi-functional crystal: Self-acousto-optic Q-switch Raman laser based on α-BaTeMo2O9 crystal [J]. IEEE Photonics Technology Letters, 2020, 20(32): 1299-1302. doi:  10.1109/LPT.2020.3020157
[36] Murray J T, Powell C R, Peyghambarian N, et al. Generation of 1.5 μm radiation through intracavity solid-state Raman shifting in Ba(NO3)2 nonlinear crystals [J]. Optics Letters, 1995, 20(9): 1017-1019. doi:  10.1364/OL.20.001017
[37] Major R A, Aitchison J S, Smith P W E, et al. Efficient Raman shifting of high-energy picosecond pulses into the eye-safe 1.5 microm spectral region by use of a KGd(WO4)2 crystal [J]. Optics Letters, 2005, 4(30): 421-423. doi:  10.1364/OL.30.000421
[38] Zverev P G, Ivleva L I. Eye-safe Nd: YVO4 laser with intracavity SRS in a BaWO4 crystal [J]. Quantum Electronics, 2012, 42(1): 27-30. doi:  10.1070/QE2012v042n01ABEH014718
[39] Bai Fen, Wang Qingpu, Tao Xutang, et al. Eye-safe Raman laser based on BaTeMo2O9 crystal [J]. Applied Physics B, 2013, 116(2): 501-505. doi:  10.1007/s00340-013-5726-5
[40] Zhang Huanian, Li Ping. High-efficiency eye-safe Nd: YAG/SrWO4 Raman laser operating at 1664 nm [J]. Applied Physics B, 2016, 122(1): 12(1). doi:  10.1007/s00340-015-6272-0
[41] Gorbunov I A, Kulagin O V, Sergeev A M. Eye-safe picosecond Raman laser [J]. Quantum Electronics, 2016, 46(10): 863-869. doi:  10.1070/QEL16206
[42] Fan Li, Shen Jun, Wang Xiaoyu, et al. Efficient continuous-wave eye-safe Nd:YVO4 self-Raman laser at 1.5 µm [J]. Optics Letters, 2021, 13(46): 3183-3186. doi:  10.1364/OL.429982
[43] Lisinetskii V A, Eichler H J, Rhee H, et al. The generation of high pulse and average power radiation in eye-safe spectral region by the third stokes generation in barium nitrate Raman laser [J]. Optics Communications, 2008, 281(8): 2227-2232. doi:  10.1016/j.optcom.2007.12.016
[44] 白振旭, 杨学宗, 陈辉, 等. 高功率金刚石激光技术研究进展 (特邀) [J]. 红外与激光工程, 2020, 12(49): 9-21. doi. 10.3788/irla20201076. doi:  10.3788/irla20201076

Bai Zhenxu, Yang Xuezong, Chen Hui, et al. Research progress of high-power diamond laser technology (Invited) [J]. Infrared and Laser Engineering, 2020, 12(49): 20201076. (in Chinese) doi:  10.3788/irla20201076
[45] Williams R J, Spence D J, Lux O, et al. High-power continuous-wave Raman frequency conversion from 1.06 microm to 1.49 microm in diamond [J]. Optics Express, 2017, 25(2): 749-757. doi:  10.1364/OE.25.000749
[46] Lee K C, Sussman B J, Nunn J, et al. Comparing phonon dephasing lifetimes in diamond using transient coherent Ultrafast phonon spectroscopy [J]. Diamond and Related Materials, 2010, 19(10): 1289-1295. doi:  10.1016/j.diamond.2010.06.002
[47] Kaminskii A A, Hemley R J, Lai J, et al. High-order stimulated Raman scattering in CVD single crystal diamond [J]. Laser Physics Letters, 2007, 4(5): 350-353. doi:  10.1002/lapl.200610127
[48] Thomas M E. Multiphonon model for absorption in diamond[C]//Proc of SPIE, 1994, 2286: 152-159.
[49] Hird J R, J Rabeau. Optical Engineering of Diamond[C]//Optical Engineering of Diamond, 2013.
[50] Savitski V G, Reilly S, Kemp A J. Steady-state Raman gain in diamond as a function of pump wavelength [J]. IEEE Journal of Quantum Electronics, 2013, 49(2): 218-223. doi:  10.1109/JQE.2012.2237505
[51] Williams R J, Kitzler O, Mckay A, et al. Investigating diamond Raman lasers at the 100 W level using quasi-continuous-wave pumping [J]. Optics Letters, 2014, 39(14): 4152-4155. doi:  10.1364/OL.39.004152
[52] Williams R J, Nold J, Strecker M, et al. Efficient Raman frequency conversion of high-power fiber lasers in diamond [J]. Laser & Photonics Reviews, 2015, 9(4): 405-411. doi:  10.1002/lpor.201500032
[53] Mckay A, Kitzler O, Mildren R P. Simultaneous brightness enhancement and wavelength conversion to the eye-safe region in a high-power diamond Raman laser [J]. Laser & Photonics Reviews, 2014, 8(3): 37-41. doi:  10.1002/lpor.201400012
[54] Bai Z, Williams R J, Kitzler O, et al. 302 W quasi-continuous cascaded diamond Raman laser at 1.5 microns with large brightness enhancement [J]. Optics Express, 2018, 26(16): 19797-19803. doi:  10.1364/OE.26.019797
[55] Casula R, Penttinen J P, Kemp A J, et al. 1.4 microm continuous-wave diamond Raman laser [J]. Optics Express, 2017, 25(25): 31377-31383. doi:  10.1364/OE.25.031377
[56] Ma Houjie, Wei Xin, Dai Shibo, et al. Intra-cavity diamond Raman laser at 1634 nm [J]. Optics Express, 2021, 29(20): 31156-31163. doi:  10.1364/OE.439098
[57] Kington R. Parametric amplification and oscillation at optical frequencies [J]. Proceedings of the Institute of Radio Engineers, 1962, 50(4): 472.
[58] Kroll N M. Parametric amplification in spatially extended media and application to the design of tuneable oscillators at optical frequencies [J]. Physical Review, 1962, 127(4): 1207-1211. doi:  10.1103/PhysRev.127.1207
[59] Giordmaine J A, Miller R C. Tunable coherent parametric oscillation in LiNbO3 at optical frequencies [J]. Physical Review Letters, 1965, 14(24): 973-976. doi:  10.1103/PhysRevLett.14.973
[60] Rines G A, Rines D M, Moulton P F. Effcient, high-energy, KTP optical parametric oscillators pumped with 1 micron Nd-Lasers [C]//Advanced Solid State Lasers, 1994, 20: PO9.
[61] Elsen F, Livrozet M, Strotkamp M, et al. Demonstration of a 100 mJ OPO/OPA for future lidar applications and laser-induced damage threshold testing of optical components for MERLIN [J]. Optical Engineering, 2018, 57(2): 1-4. doi:  10.1117/1.OE.57.2.021205
[62] Peltz M, Bäder U, Borsutzky Y A, et al. Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA [J]. Applied Physics B: Lasers and Optics, 2001, 73(7): 663-670. doi:  10.1007/s003400100733
[63] 李刚, 宁子立, 杨爱粉, 等. 基于光参量振荡器的重频人眼安全激光器技术研究[J]. 应用光学, 2011, 32(3): 579-581. doi. 10.3969/ j. iss n. 1002-2082.2011. 03.040. doi:  10.3969/j.issn.1002-2082.2011.03.040

Li Gang, Ning Zili, Yang Aifen, et al. Eye-safe repetition laser based on optical parametric oscillator [J]. Journal of Applied Optics, 2011, 32(3): 579-581. (in Chinese) doi:  10.3969/j.issn.1002-2082.2011.03.040
[64] Kaskow M, Gorajek L, Zendzian W, et al. MW peak power KTP-OPO-based “eye-safe” transmitter [J]. Opto-Electronics Review, 2018, 26(2): 188-193. doi:  10.1016/j.opelre.2018.04.005
[65] Webb M S, Moulton P F, Jeffrey J J, et al. High-average-power KTiOAsO4 optical parametric oscillator [J]. Optics Letters, 1998, 23(15): 1161-1163. doi:  10.1364/OL.23.001161
[66] Liu J, Liu Q, Huang L, et al. High energy eye-safe and mid-infrared optical parametric oscillator [J]. Laser Physics Letters, 2010, 7(12): 853-856. doi:  10.1002/lapl.201010072
[67] Foltynowicz R J, Wojcik M D. Demonstration of a high output power 1 533 nm optical parametric oscillator pumped at 1 064 nm[C]//Proceedings of the SPIE, 2010, 7838: 783815.
[68] 姚宝权, 王月珠, 鞠有伦, 等. 利用KTP光学参量振荡器获得可调谐人眼安全激光[J]. 中国激光, 2000, 27(11): 1017-9. doi. 10.3321/j. is sn: 0258-7025.2000. 11.008. doi:  10.3321/j.issn:0258-7025.2000.11.008

Yao Baoquan, Wang Yuezhu, Ju Youlun, et al. Tunable eye-safe Laser based on KTP optical parametric oscillator [J]. Chinese Journal of Lasers, 2000, 27(11): 1017-9. (in Chinese) doi:  10.3321/j.issn:0258-7025.2000.11.008
[69] Zhong K, Mei J L, Liu Y, et al. Widely tunable eye-safe optical parametric oscillator with noncollinear phase-matching in a ring cavity [J]. Optics Express, 2019, 27(8): 10449-10455. doi:  10.1364/OE.27.010449
[70] Liu Q, Zhang Z, Liu J, et al. 100 Hz high energy KTiOAsO4 optical parametric oscillator [J]. Infrared Physics & Technology, 2013, 61: 287-289. doi:  10.1016/j.infrared.2013.09.003
[71] Armstrong Darrell J, Smith Arlee V. 150-mJ 1550-nm KTA OPO with good beam quality and high efficiency [C]//Proceedings of the SPIE, 2004, 5284: 528436.
[72] 孟君, 丛振华, 赵智刚, 等. 百赫兹大能量KTA双波长光参量振荡器[J]. 中国激光, 2021, 48(12): P147-155. doi. 10.3788/cjl20214 8.1201009. doi:  10.3788/cjl202148.1201009

Meng Jun, Cong Zhenhua, Zhao Zhigang, et al. 100 Hz high-energy KTA dual-wavelength optical parametric oscillator [J]. Chinese Journal of Lasers, 2021, 48(12): 1201009. (in Chinese) doi:  10.3788/cjl202148.1201009
[73] Meng J, Li C, Cong Z, et al. Investigations on beam quality improvement of an NCPM- KTA-based high energy optical parametric oscillator using an unstable resonator with a Gaussian reflectivity mirror[Invited] [J]. Chinese Optics Letters, 2022, 20(9): 091401. (in Chinese) doi:  10.3788/col202220.091401