[1] Webb W T, Hanzo L. Modern Quadrature Amplitude Modulation: Principles and Applications for Fixed and Wireless Channels: One[M]. US: IEEE Press-John Wiley, 1994.
[2] Mukherjee B. Optical WDM Networks[M]. Berlin: Springer Science & Business Media, 2006.
[3] Hanzo L, Ng S X, Keller T, et al. Quadrature Amplitude Modulation[M]. Chichester, UK: Wiley, 2004.
[4] Rubinsztein-Dunlop H, Forbes A, Berry M V, et al. Roadmap on structured light [J]. Journal of Optics, 2016, 19(1): 013001.
[5] Forbes A, Oliveira M, Dennis M R. Structured light [J]. Nature Photonics, 2021, 15(4): 253-262. doi:  10.1038/s41566-021-00780-4
[6] Beijersbergen M W, Allen L, Veen H E L O, et al. Astigmatic laser mode converters and transfer of orbital angular momentum [J]. Optics Communications, 1993, 96(1-3): 123-132. doi:  10.1016/0030-4018(93)90535-D
[7] Enk S J, Nienhuis G. Eigenfunction description of laser beams and orbital angular momentum of light [J]. Optics Communications, 1992, 94(1-3): 147-158. doi:  10.1016/0030-4018(92)90424-P
[8] Allen L, Beijersbergen M W, Spreeuw R, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes [J]. Physical Review A, 1992, 45(11): 8185. doi:  10.1103/PhysRevA.45.8185
[9] Shen Y, Wang X, Xie Z, et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities [J]. Light: Science & Applications, 2019, 8: 90.
[10] Willner A E, Huang H, Yan Y, et al. Optical communications using orbital angular momentum beams [J]. Advances in Optics and Photonics, 2015, 7(1): 66-106. doi:  10.1364/AOP.7.000066
[11] Geng J. Structured-light 3D surface imaging: a tutorial [J]. Advances in Optics and Photonics, 2011, 3(2): 128-160. doi:  10.1364/AOP.3.000128
[12] Mair A, Vaziri A, Weihs G, et al. Entanglement of the orbital angular momentum states of photons [J]. Nature, 2001, 412(6844): 313-316. doi:  10.1038/35085529
[13] Otte E, Nape I, Rosales-Guzmán C, et al. High-dimensional cryptography with spatial modes of light: tutorial [J]. Journal of the Optical Society of America B, 2020, 37(11): A309-A323. doi:  10.1364/JOSAB.399290
[14] Fang X, Ren H, Gu M. Orbital angular momentum holography for high-security encryption [J]. Nature Photonics, 2020, 14(2): 102-108. doi:  10.1038/s41566-019-0560-x
[15] Erhard M, Fickler R, Krenn M, et al. Twisted photons: new quantum perspectives in high dimensions [J]. Light: Science & Applications, 2018, 7(3): 17146.
[16] Wang J. Advances in communications using optical vortices [J]. Photonics Research, 2016, 4(5): B14-B28. doi:  10.1364/PRJ.4.000B14
[17] Bozinovic N, Yue Y, Ren Y, et al. Orbital angular momentum (OAM) based mode division multiplexing (MDM) over a Km-length fiber [C]//Optical Society of America, 2012: Th.3.C.6.
[18] Bozinovic N, Yue Y, Ren Y, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers [J]. Science, 2013, 340(6140): 1545-1548. doi:  10.1126/science.1237861
[19] Ndagano B, Nape I, Cox M A, et al. Creation and detection of vector vortex modes for classical and quantum communication [J]. Journal of Lightwave Technology, 2018, 36(2): 292-301. doi:  10.1109/JLT.2017.2766760
[20] Chen R, Zhou H, Moretti M, et al. Orbital angular momentum waves: generation, detection, and emerging applications [J]. IEEE Communications Surveys & Tutorials, 2019, 22(2): 840-868.
[21] Qin F, Wan L, Li L, et al. A transmission metasurface for generating OAM beams [J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(10): 1793-1796. doi:  10.1109/LAWP.2018.2867045
[22] Rosales-Guzmán C, Forbes A. How to Shape Light with Spatial Light Modulators[M]. US: SPIE Press, 2017.
[23] Shen Y, Meng Y, Fu X, et al. Wavelength-tunable Hermite–Gaussian modes and an orbital-angular-momentum-tunable vortex beam in a dual-off-axis pumped Yb: CALGO laser [J]. Optics Letters, 2018, 43(2): 291-294. doi:  10.1364/OL.43.000291
[24] Song R, Gao C, Zhou H, et al. Resonantly pumped Er: YAG vector laser with selective polarization states at 1.6 µm [J]. Optics Letters, 2020, 45(16): 4626-4629. doi:  10.1364/OL.400835
[25] Wang H, Fu S, Gao C. Tailoring a complex perfect optical vortex array with multiple selective degrees of freedom [J]. Optics Express, 2021, 29(7): 10811-10824. doi:  10.1364/OE.422301
[26] Anhäuser A, Wunenburger R, Brasselet E. Acoustic rotational manipulation using orbital angular momentum transfer [J]. Physical Review Letters, 2012, 109(3): 034301. doi:  10.1103/PhysRevLett.109.034301
[27] Jiang X, Li Y, Liang B, et al. Convert acoustic resonances to orbital angular momentum [J]. Physical Review Letters, 2016, 117(3): 034301. doi:  10.1103/PhysRevLett.117.034301
[28] Li H, Ren G, Zhu B, et al. Guiding terahertz orbital angular momentum beams in multimode Kagome hollow-core fibers [J]. Optics Letters, 2017, 42(2): 179-182. doi:  10.1364/OL.42.000179
[29] Verbeeck J, Tian H, Schattschneider P. Production and application of electron vortex beams [J]. Nature, 2010, 467(7313): 301-304. doi:  10.1038/nature09366
[30] Liu C, Liu J, Niu L, et al. Terahertz circular Airy vortex beams [J]. Scientific Reports, 2017, 7(1): 1-8. doi:  10.1038/s41598-016-0028-x
[31] Mirhosseini M, Malik M, Shi Z, et al. Efficient separation of the orbital angular momentum eigenstates of light [J]. Nature Communications, 2013, 4(1): 1-6.
[32] Leach J, Padgett M J, Barnett S M, et al. Measuring the orbital angular momentum of a single photon [J]. Physical Review Letters, 2002, 88(25): 257901. doi:  10.1103/PhysRevLett.88.257901
[33] Liu Z, Yan S, Liu H, et al. Superhigh-resolution recognition of optical vortex modes assisted by a deep-learning method [J]. Physical Review Letters, 2019, 123(18): 183902. doi:  10.1103/PhysRevLett.123.183902
[34] Hickmann J M, Fonseca E, Soares W C, et al. Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum [J]. Physical Review Letters, 2010, 105(5): 053904. doi:  10.1103/PhysRevLett.105.053904
[35] Mourka A, Baumgartl J, Shanor C, et al. Visualization of the birth of an optical vortex using diffraction from a triangular aperture [J]. Optics Express, 2011, 19(7): 5760-5771. doi:  10.1364/OE.19.005760
[36] Fu S, Zhang S, Wang T, et al. Measurement of orbital angular momentum spectra of multiplexing optical vortices [J]. Optics Express, 2016, 24(6): 6240-6248. doi:  10.1364/OE.24.006240
[37] Fu S, Zhai Y, Zhang J, et al. Universal orbital angular momentum spectrum analyzer for beams [J]. PhotoniX, 2020, 1(1): 1-12. doi:  10.1186/s43074-020-00006-w
[38] Liu Y, Sun S, Pu J, et al. Propagation of an optical vortex beam through a diamond-shaped aperture [J]. Optics & Laser Technology, 2013, 45: 473-479.
[39] Ambuj A, Vyas R, Singh S. Diffraction of orbital angular momentum carrying optical beams by a circular aperture [J]. Optics Letters, 2014, 39(19): 5475-5478. doi:  10.1364/OL.39.005475
[40] Tao H, Liu Y, Chen Z, et al. Measuring the topological charge of vortex beams by using an annular ellipse aperture [J]. Applied Physics B, 2012, 106(4): 927-932. doi:  10.1007/s00340-012-4911-2
[41] Qassim H, Miatto F M, Torres J P, et al. Limitations to the determination of a Laguerre–Gauss spectrum via projective, phase-flattening measurement [J]. Journal of the Optical Society of America B, 2014, 31(6): A20-A23. doi:  10.1364/JOSAB.31.000A20
[42] Choudhary S, Sampson R, Miyamoto Y, et al. Measurement of the radial mode spectrum of photons through a phase-retrieval method [J]. Optics Letters, 2018, 43(24): 6101-6104. doi:  10.1364/OL.43.006101
[43] Bouchard F, Valencia N H, Brandt F, et al. Measuring azimuthal and radial modes of photons [J]. Optics Express, 2018, 26(24): 31925-31941. doi:  10.1364/OE.26.031925
[44] Wang J, Yang J, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing [J]. Nature photonics, 2012, 6(7): 488-496. doi:  10.1038/nphoton.2012.138
[45] Zhou Y. Optical communication with structured photons propagating through dynamic, aberrating media[D]. Rochester: University of Rochester, 2021.
[46] Berkhout G C, Lavery M P, Courtial J, et al. Efficient sorting of orbital angular momentum states of light [J]. Physical Review Letters, 2010, 105(15): 153601. doi:  10.1103/PhysRevLett.105.153601
[47] Wen Y, Chremmos I, Chen Y, et al. Spiral transformation for high-resolution and efficient sorting of optical vortex modes [J]. Physical Review Letters, 2018, 120(19): 193904. doi:  10.1103/PhysRevLett.120.193904
[48] Hossack W J, Darling A M, Dahdouh A. Coordinate transformations with multiple computer-generated optical elements [J]. Journal of Modern Optics, 1987, 34(9): 1235-1250. doi:  10.1080/09500348714551121
[49] Ruffato G, Massari M, Parisi G, et al. Test of mode-division multiplexing and demultiplexing in free-space with diffractive transformation optics [J]. Optics Express, 2017, 25(7): 7859-7868. doi:  10.1364/OE.25.007859
[50] Yang J, Liu Z, Gao S, et al. Two-dimension and high-resolution demultiplexing of coaxial multiple orbital angular momentum beams [J]. Optics Express, 2019, 27(4): 4338-4345. doi:  10.1364/OE.27.004338
[51] Li C, Zhao S. Efficient separating orbital angular momentum mode with radial varying phase [J]. Photonics Research, 2017, 5(4): 267-270. doi:  10.1364/PRJ.5.000267
[52] Ruffato G, Massari M, Romanato F. Compact sorting of optical vortices by means of diffractive transformation optics [J]. Optics Letters, 2017, 42(3): 551-554. doi:  10.1364/OL.42.000551
[53] Ruffato G, Massari M, Girardi M, et al. Non-paraxial design and fabrication of a compact OAM sorter in the telecom infrared [J]. Optics Express, 2019, 27(17): 24123-24134. doi:  10.1364/OE.27.024123
[54] Lightman S, Hurvitz G, Gvishi R, et al. Miniature wide-spectrum mode sorter for vortex beams produced by 3D laser printing [J]. Optica, 2017, 4(6): 605-610. doi:  10.1364/OPTICA.4.000605
[55] Wan C, Chen J, Zhan Q. Compact and high-resolution optical orbital angular momentum sorter [J]. APL Photonics, 2017, 2(3): 031302. doi:  10.1063/1.4974824
[56] Lightman S, Gvishi R, Hurvitz G, et al. Shaping of light beams by 3D direct laser writing on facets of nonlinear crystals [J]. Optics Letters, 2015, 40(19): 4460-4463. doi:  10.1364/OL.40.004460
[57] Yan Y, Xie G, Lavery M P, et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing [J]. Nature Communications, 2014, 5(1): 5876.
[58] Lavery M P, Robertson D J, Berkhout G C, et al. Refractive elements for the measurement of the orbital angular momentum of a single photon [J]. Optics Express, 2012, 20(3): 2110-2115. doi:  10.1364/OE.20.002110
[59] Ruffato G, Girardi M, Massari M, et al. A compact diffractive sorter for high-resolution demultiplexing of orbital angular momentum beams [J]. Scientific Reports, 2018, 8(1): 1-12.
[60] Wen Y, Chremmos I, Chen Y, et al. High-resolution and compact vortex mode sorters based on a spiral transformation [C]//2018 Conference on Lasers and Electro-Optics (CLEO), IEEE, 2018: 1-2.
[61] Huo Y, Yang G, Gu B. Realization of unitary transform and general linear transformation by optical methods—(I)Possibility analysis [J]. Acta Physica Sinica, 1975, 24(6): 438-447. (in Chinese)
[62] Fontaine N K, Ryf R, Chen H, et al. Laguerre-Gaussian mode sorter [J]. Nature Communications, 2019, 10(1): 1-7. doi:  10.1038/s41467-018-07882-8
[63] He L, Lin Z, Wen Y, et al. An inverse design method combining particle swarm optimization and wavefront matching method for multiplane light conversion [C]//Optical Society of America, 2020: FM7D.5.
[64] Lin Z, Wen Y, Chen Y, et al. Transmissive multi-plane light conversion for demultiplexing orbital angular momentum modes [C]//Optical Society of America, 2020: SF1J. 5.
[65] Bian Y, Li Y, Li W, et al. Modes multiplexing conversion based on multi-plane light conversion [C]//Optical Society of America, 2020: M4A.252.
[66] Zhao Q, Hao S, Wang Y, et al. Orbital angular momentum detection based on diffractive deep neural network [J]. Optics Communications, 2019, 443: 245-249. doi:  10.1016/j.optcom.2019.03.059
[67] Huang Z, Wang P, Liu J, et al. All-optical signal processing of vortex beams with diffractive deep neural networks [J]. Physical Review Applied, 2021, 15(1): 014037. doi:  10.1103/PhysRevApplied.15.014037
[68] Khonina S N, Kotlyar V V, Skidanov R V, et al. Gauss–Laguerre modes with different indices in prescribed diffraction orders of a diffractive phase element [J]. Optics Communications, 2000, 175(4-6): 301-308. doi:  10.1016/S0030-4018(00)00472-7
[69] Gibson G, Courtial J, Padgett M J, et al. Free-space information transfer using light beams carrying orbital angular momentum [J]. Optics Express, 2004, 12(22): 5448-5456. doi:  10.1364/OPEX.12.005448
[70] Lavery M P, Berkhout G C, Courtial J, et al. Measurement of the light orbital angular momentum spectrum using an optical geometric transformation [J]. Journal of Optics, 2011, 13(6): 064006. doi:  10.1088/2040-8978/13/6/064006
[71] Malik M, Mirhosseini M, Lavery M P, et al. Direct measurement of a 27-dimensional orbital-angular-momentum state vector [J]. Nature Communications, 2014, 5(1): 4115.
[72] Potoček V, Miatto F M, Mirhosseini M, et al. Quantum hilbert hotel [J]. Physical Review Letters, 2015, 115(16): 160505. doi:  10.1103/PhysRevLett.115.160505
[73] Ruffato G, Massari M, Romanato F. Multiplication and division of the orbital angular momentum of light with diffractive transformation optics [J]. Light: Science & Applications, 2019, 8(1): 1-13.
[74] Takashima S, Kobayashi H, Iwashita K. Integer multiplier for the orbital angular momentum of light using a circular-sector transformation [J]. Physical Review A, 2019, 100(6): 063822. doi:  10.1103/PhysRevA.100.063822
[75] Wen Y, Chremmos I, Chen Y, et al. Arbitrary multiplication and division of the orbital angular momentum of light [J]. Physical Review Letters, 2020, 124(21): 213901. doi:  10.1103/PhysRevLett.124.213901
[76] Zhou H, Dong J, Wang J, et al. Orbital angular momentum divider of light [J]. IEEE Photonics Journal, 2017, 9(1): 1-8.
[77] Zhao Z, Ren Y, Xie G, et al. Invited Article: Division and multiplication of the state order for data-carrying orbital angular momentum beams [J]. APL Photonics, 2016, 1(9): 090802. doi:  10.1063/1.4968838
[78] Ruffato G, Romanato F. Algebra of light: multiplication and division of orbital angular momentum [C]//2020 Italian Conference on Optics and Photonics (ICOP), IEEE, 2020: 1-4.
[79] Wen Y, Chremmos I, Chen Y, et al. Compact and high-performance vortex mode sorter for multi-dimensional multiplexed fiber communication systems [J]. Optica, 2020, 7(3): 254-262. doi:  10.1364/OPTICA.385590
[80] Fickler R, Lapkiewicz R, Huber M, et al. Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information [J]. Nature Communications, 2014, 5(1): 5502.
[81] Walsh G F. Pancharatnam-Berry optical element sorter of full angular momentum eigenstate [J]. Optics Express, 2016, 24(6): 6689-6704. doi:  10.1364/OE.24.006689
[82] Ruffato G, Brasselet E, Massari M, et al. Electrically activated spin-controlled orbital angular momentum multiplexer [J]. Applied Physics Letters, 2018, 113(1): 011109. doi:  10.1063/1.5030844
[83] Fontaine N K, Ryf R, Chen H, et al. Laguerre-Gaussian mode sorters of high spatial mode count [C]//International Society for Optics and Photonics, 2020: 1120319.