[1] Gabor D. A new microscopic principle [J]. Nature, 1948, 161: 777-778. doi:  10.1038/161777a0
[2] Lin Y C, Chen H C, Tu H Y, et al. Optically driven full-angle sample rotation for tomographic imaging in digital holographic microscopy [J]. Optics Letters, 2017, 42(7): 1321-1324. doi:  10.1364/OL.42.001321
[3] Geng J. Three-dimensional display technologies [J]. Advances in Optics and Photonics, 2013, 5(4): 456-535. doi:  10.1364/AOP.5.000456
[4] Satoshi H, Yoshio H, Nobuo N. Holographic femtosecond laser processing with multiplexed phase Fresnel lenses [J]. Optics Letters, 2006, 31(11): 1705-1707. doi:  10.1364/OL.31.001705
[5] Xiao L, Jianying H, Kun W, et al. Frequency expanded non-interferometric phase retrieval for holographic data storage [J]. Optics Express, 2020, 28(1): 511-518. doi:  10.1364/OE.380365
[6] 李顺, 王地, 陆彦婷. 一种提高数字全息自适应光学系统成像分辨率的方法[J]. 中国激光, 2019, 46(7): 0709001. doi:  10.3788/CJL201946.0709001

Li Shun, Wang Di, Lu Yanting. Method for improving imaging resolution of digital holographic adaptive optical system [J]. Chinese Journal of Lasers, 2019, 46(7): 0709001. (in Chinese) doi:  10.3788/CJL201946.0709001
[7] 姚龙超, 吴学成, 林小丹, 等. 基于高速数字全息的燃烧生物质颗粒测试[J]. 激光与光电子学进展, 2019, 56(10): 100901.

Yao Longchao, Wu Xuecheng, Lin Xiaodan, et al. Measurement of burning biomass particles via high-speed digital holography [J]. Laser & Optoelectronics Progress, 2019, 56(10): 100901. (in Chinese)
[8] Sutkowski M, Kujawińska M. Application of liquid crystal (LC) devices for optoelectronic reconstruction of digitally stored holograms [J]. Optics and Lasers in Engineering, 2000, 33(3): 191-201. doi:  10.1016/S0143-8166(00)00042-7
[9] Kohler C, Schwab X, Osten W. Optimally tuned spatial light modulators for digital holography [J]. Applied Optics, 2006, 45(5): 960-967. doi:  10.1364/AO.45.000960
[10] Zwick S, Haist T, Warber M, et al. Dynamic holography using pixelated light modulators [J]. Applied Optics, 2010, 49(25): F47-F58. doi:  10.1364/AO.49.000F47
[11] Reicherter M, Haist T, Wagemann E U, et al. Optical particle trapping with computer-generated holograms written on a liquid-crystal display [J]. Optics Letters, 1999, 24(9): 608-610. doi:  10.1364/OL.24.000608
[12] Daneshpanah M, Zwick S, Schaal F, et al. 3D Holographic imaging and trapping for non-invasive cell identification and tracking [J]. Journal of Display Technology, 2010, 6(10): 490-499. doi:  10.1109/JDT.2010.2043499
[13] Yu H, Jia S, Dong J, et al. Phase curvature compensation in digital holographic microscopy based on phase gradient fitting and optimization [J]. Journal of the Optical Society of America A, 2019, 36(12): D1-D6. doi:  10.1364/JOSAA.36.0000D1
[14] Liu S, Lian Q, Xu Z. Phase aberration compensation for digital holographic microscopy based on double fitting and background segmentation [J]. Optics and Lasers in Engineering, 2019, 115: 238-242. doi:  10.1016/j.optlaseng.2018.12.001
[15] Maurer C, Jesacher A, Bernet S, et al. What spatial light modulators can do for optical microscopy [J]. Laser & Photonics Reviews, 2011, 5(1): 81-101.
[16] Haist T, Hasler M, Osten W, et al. Programmable Microscopy[M]. Berlin: Springer, 2014.
[17] Marquet P, Depeursinge C. Digital Holographic Microscopy: A New Imaging Technique to Quantitatively Explore Cell Dynamics with Nanometer Sensitivity[M]. Berlin: Springer, 2014.
[18] Onural L, Yaras F, Kang H. Digital holographic three-dimensional video displays [J]. Proceedings of the IEEE, 2011, 99(4): 576-589. doi:  10.1109/JPROC.2010.2098430
[19] Lee B, Kim Y. Three-Dimensional Display and Imaging: Status and Prospects[M]. Berlin: Springer, 2012.
[20] Osten W, Baumbach T, Jüptner W. Comparative digital holography [J]. Optics Letters, 2002, 27(20): 1764-1766. doi:  10.1364/OL.27.001764
[21] Baumbach T, Osten W, Kopylow C V, et al. Remote metrology by comparative digital holography [J]. Applied Optics, 2006, 45(5): 925-934. doi:  10.1364/AO.45.000925
[22] 温凯, 马英, 张美玲, 等. 高稳定性定量相位显微技术[J]. 激光与光电子学进展, 2020, 57(20): 200001.

Wen Kai, Ma Ying, Zhang Meiling, et al. Quantitative phase microscopy with high stability [J]. Laser & Optoelectronics Progress, 2020, 57(20): 200001. (in Chinese)
[23] Muller R A, Buffington A. Real-time correction of atmospherically degraded telescope images through image sharpening [J]. Journal of the Optical Society of America, 1974, 64(9): 1200-1210. doi:  10.1364/JOSA.64.001200
[24] Ilhan H A, Dogar M, Ozcan M. Digital holographic microscopy and focusing methods based on image sharpness [J]. Journal of Microscopy, 2014, 255(3): 138-149. doi:  10.1111/jmi.12144
[25] Santos A, Ortiz De Solorzano C, Vaquero J J, et al. Evaluation of autofocus functions in molecular cytogenetic analysis [J]. Journal of Microscopy, 1997, 188(3): 264-272. doi:  10.1046/j.1365-2818.1997.2630819.x
[26] Brenner J F, Dew B S, Horton J B, et al. An automated microscope for cytologic research a preliminary evaluation [J]. Journal of Histochemistry & Cytochemistry, 1976, 24(1): 100-111.
[27] Yeo T, Ong S H, Jayasooriah, et al. Autofocusing for tissue microscopy [J]. Image and Vision Computing, 1993, 11(10): 629-639. doi:  10.1016/0262-8856(93)90059-P
[28] Fonseca E S R, Fiadeiro P T, Pereira M, et al. Comparative analysis of autofocus functions in digital in-line phase-shifting holography [J]. Applied Optics, 2016, 55(27): 7663-7674. doi:  10.1364/AO.55.007663
[29] Firestone L, Cook K, Culp K, et al. Comparison of autofocus methods for automated microscopy [J]. Cytometry, 1991, 12(3): 195-206. doi:  10.1002/cyto.990120302
[30] Vollath D. Automatic focusing by correlative methods [J]. Journal of Microscopy, 1987, 147(3): 279-288. doi:  10.1111/j.1365-2818.1987.tb02839.x
[31] Groen F C A, Young I T, Ligthart G. A comparison of different focus functions for use in autofocus algorithms [J]. Cytometry, 1985, 6(2): 81-91. doi:  10.1002/cyto.990060202
[32] Langehanenberg P, Kemper B, Dirksen D, et al. Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging [J]. Applied Optics, 2008, 47(19): D176-D182. doi:  10.1364/AO.47.00D176
[33] Bravo-Zanoguera M, Massenbach B V, Kellner A L, et al. High-performance autofocus circuit for biological microscopy [J]. Review of Scientific Instruments, 1998, 69(11): 3966-3977. doi:  10.1063/1.1149207
[34] Sun Y, Duthaler S, Nelson B J. Autofocusing in computer microscopy: selecting the optimal focus algorithm [J]. Microscopy Research and Technique, 2004, 65(3): 139-149. doi:  10.1002/jemt.20118
[35] Ozgen M T, Tuncer T E. Object reconstruction from in-line Fresnel holograms without explicit depth focusing [J]. Optical Engineering, 2004, 43(6): 1300-1310. doi:  10.1117/1.1737785
[36] Geusebroek J-M, Cornelissen F, Smeulders A W M, et al. Robust autofocusing in microscopy [J]. Cytometry, 2000, 39(1): 1-9. doi:  10.1002/(SICI)1097-0320(20000101)39:1<1::AID-CYTO2>3.0.CO;2-J
[37] Thelen A, Bongartz J, Giel D, et al. Iterative focus detection in hologram tomography [J]. Journal of the Optical Society of America A, 2005, 22(6): 1176-1180. doi:  10.1364/JOSAA.22.001176
[38] Elsfisser H P, Lehr U, Agricola B, et al. Establishment and characterisation of two cell lines with different grade of differentiation derived from one primary human pancreatic adenocarcinoma [J]. Virchows Archiv B Cell Pathology, 1992, 61(1): 295-306. doi:  10.1007/BF02890431
[39] Trujillo C A, Garcia-Sucerquia J. Automatic method for focusing biological specimens in digital lensless holographic microscopy [J]. Optics Letters, 2014, 39(9): 2569-2572. doi:  10.1364/OL.39.002569
[40] Restrepo J F, Garcia-Sucerquia J. Automatic three-dimensional tracking of particles with high-numerical-aperture digital lensless holographic microscopy [J]. Optics Letters, 2012, 37(4): 752-754. doi:  10.1364/OL.37.000752
[41] Dubois F, Schockaert C, Callens N, et al. Focus plane detection criteria in digital holography microscopy by amplitude analysis [J]. Optics Express, 2006, 14(13): 5895-5908. doi:  10.1364/OE.14.005895
[42] Milgram J H, Li W. Computational reconstruction of images from holograms [J]. Applied Optics, 2002, 41(5): 853-864. doi:  10.1364/AO.41.000853
[43] Schnars U, Jüptner W P O. Digital recording and numerical reconstruction of holograms [J]. Measurement Science And Technology, 2002, 13(9): R85-R101. doi:  10.1088/0957-0233/13/9/201
[44] Li W, Loomis N C, Hu Q, et al. Focus detection from digital in-line holograms based on spectral L1 norms [J]. Journal of the Optical Society of America A, 2007, 24(10): 3054-3062. doi:  10.1364/JOSAA.24.003054
[45] Dohet-Eraly J, Yourassowsky C, Dubois F. Refocusing based on amplitude analysis in color digital holographic microscopy [J]. Optics Letters, 2014, 39(5): 1109-1112. doi:  10.1364/OL.39.001109
[46] Dubois F, Yourassowsky C. Full off-axis red-green-blue digital holographic microscope with LED illumination [J]. Optics Letters, 2012, 37(12): 2190-2192. doi:  10.1364/OL.37.002190
[47] Ferraro P, Grilli S, Miccio L, et al. Full color 3D imaging by digital holography and removal of chromatic aberrations [J]. Journal of Display Technology, 2008, 4(1): 97-100. doi:  10.1109/JDT.2007.900936
[48] Yamaguchi I, Matsumura T, Kato J I. Phase-shifting color digital holography [J]. Optics Letters, 2002, 27(13): 1108-1110. doi:  10.1364/OL.27.001108
[49] Garcia-Sucerquia J. Color lensless digital holographic microscopy with micrometer resolution [J]. Optics Letters, 2012, 37(10): 1724-1726. doi:  10.1364/OL.37.001724
[50] Tahara T, Kakue T, Awatsuji Y, et al. Parallel phase-shifting color digital holographic microscopy [J]. 3D Research, 2010, 1(4): 1-6. doi:  10.1007/3DRes.04(2010)01
[51] Dubois F, Mallahi A E, Dohet-Eraly J, et al. Refocus criterion for both phase and amplitude objects in digital holographic microscopy [J]. Optics Letters, 2014, 39(15): 4286-4289. doi:  10.1364/OL.39.004286
[52] Yourassowsky C, Dubois F. High throughput holographic imaging-in-flow for the analysis of a wide plankton size range [J]. Optics Express, 2014, 22(6): 6661-6673. doi:  10.1364/OE.22.006661
[53] Memmolo P, Distante C, Paturzo M, et al. Automatic focusing in digital holography and its application to stretched holograms [J]. Optics Letters, 2011, 36(10): 1945-1947. doi:  10.1364/OL.36.001945
[54] Memmolo P, Paturzo M, Javidi B, et al. Refocusing criterion via sparsity measurements in digital holography [J]. Optics Letters, 2014, 39(16): 4719-4722. doi:  10.1364/OL.39.004719
[55] Gao P, Yao B, Min J, et al. Autofocusing of digital holographic microscopy based on off-axis illuminations [J]. Optics Letters, 2012, 37(17): 3630-3632. doi:  10.1364/OL.37.003630
[56] Gao P, Yao B, Rupp R, et al. Autofocusing based on wavelength dependence of diffraction in two-wavelength digital holographic microscopy [J]. Optics Letters, 2012, 37(7): 1172-1174. doi:  10.1364/OL.37.001172
[57] Zheng J, Gao P, Shao X. Opposite-view digital holographic microscopy with autofocusing capability [J]. Scientific Reports, 2017, 7(1): 4255-4263. doi:  10.1038/s41598-017-04568-x
[58] Gao P, Pedrini G, Osten W. Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy [J]. Optics Letters, 2013, 38(8): 1328-1330. doi:  10.1364/OL.38.001328
[59] Yuan C, Situ G, Pedrini G, et al. Resolution improvement in digital holography by angular and polarization multiplexing [J]. Applied Optics, 2011, 50(7): B6-B11. doi:  10.1364/AO.50.0000B6
[60] Gustafsson M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy [J]. Journal of Microscopy, 2000, 198: 82-87. doi:  10.1046/j.1365-2818.2000.00710.x
[61] Shao L, Kner P, Rego E H, et al. Super-resolution 3D microscopy of live whole cells using structured illumination [J]. Nature Methods, 2011, 8(12): 1044-1046. doi:  10.1038/nmeth.1734
[62] Kemper B, Bally G v. Digital holographic microscopy for live cell applications and technical inspection [J]. Applied Optics, 2008, 47(4): A52-A61. doi:  10.1364/AO.47.000A52
[63] Langehanenberg P, Bally G V, Kemper B. Autofocusing in digital holographic microscopy [J]. 3D Research, 2011, 2(1): 1-11. doi:  10.1007/3DRes.01(2011)1
[64] Schnars U, Jueptner W. Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques[M]. Berlin: Springer-Verlag, 2005.
[65] Cuche E, Bevilacqua F, Depeursinge C. Digital holography for quantitative phase-contrast imaging [J]. Optics Letters, 1999, 24(5): 291-293. doi:  10.1364/OL.24.000291
[66] Marquet P, Rappaz B, Magistretti P J, et al. Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy [J]. Optics Letters, 2005, 30(5): 468-470. doi:  10.1364/OL.30.000468
[67] Frauel Y, Naughton T J, Matoba O, et al. Three-dimensional imaging and processing using computational holographic imaging [J]. Proceedings of the IEEE, 2006, 94(3): 636-653. doi:  10.1109/JPROC.2006.870704
[68] Ferraro P, Grilli S, Alfieri D, et al. Extended focused image in microscopy by digital holography [J]. Optics Express, 2005, 13(18): 6738-6749. doi:  10.1364/OPEX.13.006738
[69] Anand A, Chhaniwal V K, Javidi B. Real-time digital holographic microscopy for phase contrast 3D imaging of dynamic phenomena [J]. Journal of Display Technology, 2010, 6(10): 500-505. doi:  10.1109/JDT.2010.2052020
[70] Anand A, Chhaniwal V K, Javidi B. Imaging embryonic stem cell dynamics using quantitative 3D digital holographic microscopy [J]. IEEE Photonics Journal, 2011, 3(3): 546-554. doi:  10.1109/JPHOT.2011.2158637
[71] Rappaz B, Barbul A, Emery Y, et al. Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer [J]. Cytometry Part A, 2008, 73A(10): 895-903. doi:  10.1002/cyto.a.20605
[72] Shin D, Daneshpanah M, Anand A, et al. Optofluidic system for three-dimensional sensing and identification of micro-organisms with digital holographic microscopy [J]. Optics Letters, 2010, 35(23): 4066-4068. doi:  10.1364/OL.35.004066
[73] Anand A, Chhaniwal V K, Patel N R, et al. Automatic identification of malaria-infected RBC with digital holographic microscopy using correlation algorithms [J]. IEEE Photonics Journal, 2012, 4(5): 1456-1464. doi:  10.1109/JPHOT.2012.2210199
[74] Go T, Byeon H, Lee S J. Label-free sensor for automatic identification of erythrocytes using digital in-line holographic microscopy and machine learning [J]. Blosensors and Bloelectronlcs, 2018, 103: 12-18. doi:  10.1016/j.bios.2017.12.020
[75] Singh D K, Ahrens C C, Li W, et al. Label-free, high-throughput holographic screening and enumeration of tumor cells in blood [J]. Lab on a Chip, 2017, 17: 2920-2932. doi:  10.1039/C7LC00149E
[76] Kemper B, Langehanenberg P, Vollmer A, et al. Digital holographic microscopy: label-free 3D migration monitoring of living cells [J]. Imaging & Microscopy, 2010, 11(4): 26-28.
[77] Lee S J, Go T, Byeon H. Three-dimensional swimming motility of microorganism in the near-wall region [J]. Experiments in Fluids, 2016, 57(2): 1-10.
[78] Go T, Byeon H, Lee S J. Focusing and alignment of erythrocytes in a viscoelastic medium [J]. Scientific Reports, 2017, 7(1): 1-10. doi:  10.1038/s41598-016-0028-x
[79] Faridian A, Pedrini G, Osten W. High-contrast multilayer imaging of biological organisms through dark-field digital refocusing [J]. Journal of Biomedical Optics, 2013, 18(8): 086009.
[80] Zhang M, Ma Y, Wang Y, et al. Polarization grating based on diffraction phase microscopy for quantitative phase imaging of paramecia [J]. Optics Express, 2020, 28(20): 29775-29787. doi:  10.1364/OE.404289
[81] Faridian A, Pedrini G, Osten W. Opposed-view dark-field digital holographic microscopy [J]. Biomedical Optics Express, 2014, 5(3): 728-736. doi:  10.1364/BOE.5.000728
[82] Yu X, Hong J, Liu C, et al. Four-dimensional motility tracking of biological cells by digital holographic microscopy [J]. Journal of Biomedical Optics, 2014, 19(4): 045001.
[83] Juette M F, Bewersdorf J. Three-dimensional tracking of single fluorescent particles with submillisecond temporal resolution [J]. Nano Letters, 2010, 10(11): 4657-4663. doi:  10.1021/nl1028792
[84] Dalgarno P A, Dalgarno H I C, Putoud A, et al. Multiplane imaging and three dimensional nanoscale particle tracking in biological microscopy [J]. Optics Express, 2010, 18(2): 877-884. doi:  10.1364/OE.18.000877
[85] Cheong F C, Krishnatreya B J, Grier D G. Strategies for three-dimensional particle tracking with holographic video microscopy [J]. Optics Express, 2010, 18(13): 13563-13573. doi:  10.1364/OE.18.013563
[86] Memmolo P, Iannone M, Ventre M, et al. On the holographic 3D tracking of in vitro cells characterized by a highly-morphological change [J]. Optics Express, 2012, 20(27): 28485-28493. doi:  10.1364/OE.20.028485
[87] Talapatra S, Katz J. Three-dimensional velocity measurements in a roughness sublayer using microscopic digital in-line holography and optical index matching [J]. Measurement Science and Technology, 2012, 24(2): 024004.
[88] Byeon H J, Seo K W, Lee S J. Precise measurement of three-dimensional positions of transparent ellipsoidal particles using digital holographic microscopy [J]. Applied Optics, 2015, 54(8): 2106-2112. doi:  10.1364/AO.54.002106
[89] Go T, Kim J, Lee S J. Three-dimensional volumetric monitoring of settling particulate matters on a leaf using digital in-line holographic microscopy [J]. Journal of Hazardous Materials, 2021, 404: 124116. doi:  10.1016/j.jhazmat.2020.124116
[90] Byeon H, Go T, Lee S J. Digital stereo-holographic microscopy for studying three-dimensional particle dynamics [J]. Optics and Lasers in Engineering, 2018, 105: 6-13. doi:  10.1016/j.optlaseng.2017.12.008