[1] Maiman T H. Stimulated optical radiation in ruby [J]. Nature, 1960, 187(4736): 493-494. doi:  10.1038/187493a0
[2] Woodbury E J, Ng W K. Ruby laser operation in the near IR [J]. Proc IRE, 1962, 50: 2367.
[3] Eckhardt G, Hellwarth R W, Mcclung F J, et al. Stimulated Raman scattering from organic liquids [J]. Physical Review Letters, 1962, 9(11): 455-457. doi:  10.1103/PhysRevLett.9.455
[4] Raman C V, Krishnan K S. A new type of secondary radiation [J]. Nature, 1928, 121(3048): 501-502.
[5] Ippen E P. Low-power quasi-CW Raman oscillator [J]. Applied Physics Letters, 1970, 16(8): 303-305. doi:  10.1063/1.1653204
[6] Stolen R H, Ippen E P, Tynes A R. Raman oscillation in glass optical waveguide [J]. Applied Physics Letters, 1972, 20(2): 62-64. doi:  10.1063/1.1654046
[7] Blow K J, Wood D. Theoretical description of transient stimulated Raman scattering in optical fibers [J]. IEEE Journal of Quantum Electronics, 1989, 25(12): 2665-2673. doi:  10.1109/3.40655
[8] Headley C, Agrawal G P. Unified description of ultrafast stimulated Raman scattering in optical fibers [J]. Journal of the Optical Society of America B, 1996, 13(10): 2170-2177. doi:  10.1364/JOSAB.13.002170
[9] Santhanam J, Agrawal G P. Raman-induced spectral shifts in optical fibers: General theory based on the moment method [J]. Optics Communications, 2003, 222(1): 413-420.
[10] Lin Q, Agrawal G P. Vector theory of stimulated Raman scattering and its application to fiber-based Raman amplifiers [J]. Journal of the Optical Society of America B, 2003, 20(8): 1616-1631. doi:  10.1364/JOSAB.20.001616
[11] Armstrong J A, Bloembergen N, Ducuing J, et al. Interactions between light waves in a nonlinear dielectric [J]. Physical Review, 1962, 127(6): 1918-1939. doi:  10.1103/PhysRev.127.1918
[12] Bloembergen N, Shen Y R. Multimode effects in stimulated Raman emission [J]. Physical Review Letters, 1964, 13(24): 720-724. doi:  10.1103/PhysRevLett.13.720
[13] Shen Y R, Bloembergen N. Theory of stimulated Brillouin and Raman scattering [J]. Physical Review, 1965, 137(6A): A1787-A1805. doi:  10.1103/PhysRev.137.A1787
[14] Bloembergen N. The stimulated Raman effect [J]. American Journal of Physics, 1967, 35(11): 989-1023. doi:  10.1119/1.1973774
[15] Galeener F L, Mikkelsen J C, Geils R H, et al. The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5 [J]. Applied Physics Letters, 1978, 32(1): 34-36. doi:  10.1063/1.89823
[16] Sirleto L, Antonietta Ferrara M, Nikitin T, et al. Giant Raman gain in silicon nanocrystals [J]. Nature Communications, 2012, 3(1): 1220. doi:  10.1038/ncomms2188
[17] Sirleto L, Vergara A, Ferrara M A. Advances in stimulated Raman scattering in nanostructures [J]. Advances in Optics and Photonics, 2017, 9(1): 169-217. doi:  10.1364/AOP.9.000169
[18] Dianov E M. Advances in Raman fibers [J]. Journal of Lightwave Technology, 2002, 20(8): 1457-1462. doi:  10.1109/JLT.2002.800263
[19] Stolen R H. The early years of fiber nonlinear optics [J]. Journal of Lightwave Technology, 2008, 26(9): 1021-1031. doi:  10.1109/JLT.2008.922147
[20] Feng Y. Raman Fiber Lasers[M]//William T Rhodes. Springer Series in Optical Sciences. Berlin: Springer, 2017.
[21] Supradeepa V R, Feng Y, Nicholson J W. Raman fiber lasers [J]. Journal of Optics, 2017, 19(2): 023001. doi:  10.1088/2040-8986/19/2/023001
[22] Feng Y, Jiang H, Zhang L. Adcances in high power Raman fiber laser technology [J]. Chinese Journal of Lasers, 2017, 44(2): 0201005. (in Chinese)
[23] Glick Y, Shamir Y, Sintov Y, et al. Brightness enhancement with Raman fiber lasers and amplifiers using multi-mode or multi-clad fibers [J]. Optical Fiber Technology, 2019, 52: 101955. doi:  10.1016/j.yofte.2019.101955
[24] Islam M N. Raman amplifiers for telecommunications [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8(3): 548-559. doi:  10.1109/JSTQE.2002.1016358
[25] Namiki S, Seo K, Tsukiji N, et al. Challenges of Raman amplification [J]. Proceedings of the IEEE, 2006, 94(5): 1024-1035. doi:  10.1109/JPROC.2006.873444
[26] Pelouch W S. Raman amplification: An enabling technology for long-haul coherent transmission systems [J]. Journal of Lightwave Technology, 2016, 34(1): 6-19. doi:  10.1109/JLT.2015.2458771
[27] Smith R G. Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering [J]. Applied Optics, 1972, 11(11): 2489-2494. doi:  10.1364/AO.11.002489
[28] Gloge D. Weakly guiding fibers [J]. Applied Optics, 1971, 10(10): 2252-2258. doi:  10.1364/AO.10.002252
[29] Stolen R H, Lin C. Two-Photon and Two-Step Absorption in Glass Optical Waveguide[M]//Shashanka S Mitra, Bernard Bendow. Optical Properties of Highly Transparent Solids. Boston, MA: Springer, 1975: 307-315.
[30] Hasegawa A, Tappert F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion [J]. Applied Physics Letters, 1973, 23(3): 142-144. doi:  10.1063/1.1654836
[31] Stolen R H, Ashkin A. Optical Kerr effect in glass waveguide [J]. Applied Physics Letters, 1973, 22(6): 294-296. doi:  10.1063/1.1654644
[32] Stolen R H, Ippen E P. Raman gain in glass optical waveguides [J]. Applied Physics Letters, 1973, 22(6): 276-278. doi:  10.1063/1.1654637
[33] Stolen R H. Raman and Raman gain spectroscopy in optical fibers[C]//Proc 3rd Int Conf Light Scattering in Solids, 1976.
[34] Lin C, Stolen R H. Backward Raman amplification and pulse steepening in silica fibers [J]. Applied Physics Letters, 1976, 29(7): 428-431. doi:  10.1063/1.89107
[35] Hill K O, Kawasaki B S, Johnson D C. Low‐threshold cw Raman laser [J]. Applied Physics Letters, 1976, 29(3): 181-183. doi:  10.1063/1.89016
[36] Jain R K, Lin C, Stolen R H, et al. A high‐efficiency tunable cw Raman oscillator [J]. Applied Physics Letters, 1977, 30(3): 162-164. doi:  10.1063/1.89318
[37] Johnson D C, Hill K O, Kawasaki B S, et al. Tunable Raman fibre-optic laser [J]. Electronics Letters, 1977, 13: 53-55. doi:  10.1049/el:19770038
[38] Jain R K, Lin C, Stolen R H, et al. A tunable multiple Stokes cw fiber Raman oscillator [J]. Applied Physics Letters, 1977, 31(2): 89-90. doi:  10.1063/1.89601
[39] Dianov E M, Isaev S K, Kornienko L S, et al. Raman laser with optical-fiber resonator [J]. Soviet Journal of Quantum Electronics, 1978, 8: 744-746. doi:  10.1070/QE1978v008n06ABEH010388
[40] Johnson D C, Hill K O, Kawasaki B S. Continuous-wave optical-fiber Raman oscillator employing a two-mirror resonator configuration [J]. Applied Optics, 1978, 17(19): 3032-3034. doi:  10.1364/AO.17.003032
[41] Lin C, Cohen L G, Stolen R H, et al. Near-infrared sources in the 1–1.3 μm region by efficient stimulated Raman emission in glass fibers [J]. Optics Communications, 1977, 20(3): 426-428. doi:  10.1016/0030-4018(77)90221-8
[42] Lin C, French W G. A near‐infrared fiber Raman oscillator tunable from 1.07 to 1.32 μm [J]. Applied Physics Letters, 1979, 34(10): 666-668. doi:  10.1063/1.90630
[43] Chinlon L. Designing optical fibers for frequency conversion and optical amplification by stimulated Raman scattering and phase-matched four-photon mixing [J]. Journal of Optical Communications, 1983, 4(1): 2-9.
[44] Koepf G A. Amplification by stimulated Raman scattering in low-loss optical fibers [J]. Archiv der Elektronik und Ubertragung, 1983, 37: 145-152.
[45] Aoki Y, Kishida S, Honmou H, et al. Efficient backward and forward pumping CW Raman amplification for InGaAsP laser light in silica fibres [J]. Electronics Letters, 1983, 19(16): 620-622.
[46] Ohmori Y, Sasaki Y, Edahiro T. Stimulated Raman scattering in optical fibers [J]. Trans IECE Jpn, 1983, E-66: 146.
[47] Aoki Y. Properties of fiber Raman amplifiers and their applicability to digital optical communication systems [J]. Journal of Lightwave Technology, 1988, 6(7): 1225-1239. doi:  10.1109/50.4120
[48] Kean P N, Sinclair B D, Smith K, et al. Experimental evaluation of a fibre Raman oscillator having fibre grating reflectors [J]. Journal of Modern Optics, 1988, 35(3): 397-406. doi:  10.1080/09500348814550431
[49] Snitzer E, Po H, Hakimi F, et al. Double-clad, offset core Nd fiber laser[C]//Proceedings of the Optical Fiber Sensors, New Orleans, Louisiana, F, 1988: PD5.
[50] Kafka D J. Laser diode pumped fiber lasers with pump cavity: United States, 4829529[P]. 1989-05-09.
[51] Druehl K, Wenzel R G, Carlsten J L. Observation of solitons in stimulated Raman scattering [J]. Physical Review Letters, 1983, 51(13): 1171-1174. doi:  10.1103/PhysRevLett.51.1171
[52] Mitschke F M, Mollenauer L F. Discovery of the soliton self-frequency shift [J]. Optics Letters, 1986, 11(10): 659-661. doi:  10.1364/OL.11.000659
[53] Islam M N, Mollenauer L F, Stolen R H, et al. Amplifier/compressor fiber Raman lasers [J]. Optics Letters, 1987, 12(10): 814-816. doi:  10.1364/OL.12.000814
[54] Gouveia-Neto A S, Gomes A S L, Taylor J R, et al. Cascade Raman soliton fiber ring laser [J]. Optics Letters, 1987, 12(11): 927-929. doi:  10.1364/OL.12.000927
[55] Gouveia-Neto A S, Gomes A S L, Taylor J R. High-efficiency single-pass solitonlike compression of Raman radiation in an optical fiber around 1.4 μm [J]. Optics Letters, 1987, 12(12): 1035-1037. doi:  10.1364/OL.12.001035
[56] Po H, Cao J D, Laliberte B M, et al. High power neodymium-doped single transverse mode fibre laser [J]. Electronics Letters, 1993, 29(17): 1500-1501. doi:  10.1049/el:19931000
[57] Muendel M, Engstrom B, Kea D, et al. 35-watt cw single-mode ytterbium fiber laser at 1.1 µm [J]. Optics & Photonics News, 1997, 8(10): 51-52.
[58] Grubb S G, Erdogan T, Mizrahi V, et al. 1.3 μm cascaded Raman amplifier in germanosilicate fibers[C]//Proceedings of the Optical Amplifiers and Their Applications, 1994: PD3.
[59] Dianov E M, Grekov M V, Bufetov I A, et al. CW high power 1.24 µm and 1.48 µm Raman lasers based on low loss phosphosilicate fibre [J]. Electronics Letters, 1997, 33(18): 1542-1544.
[60] Dianov E M, Fursa D G, Abramov A A, et al. Low-loss high germania-doped fiber: Apromising gain medium for 1.3 μm Raman amplifier[C]//Proceedings of the in Proc 20 th Eur Conf Opt Commun, 1994.
[61] Dianov E M, Prokhorov A M. Medium-power CW Raman fiber lasers [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(6): 1022-1028. doi:  10.1109/2944.902151
[62] Islam M N. Raman Amplifiers for Telecommunications 2[M]. New York: Springer, 2004.
[63] Siddiqui A S, Vienne G. The Effect of pump and signal laser fluctuations on the output signal from Raman and Brillouin optical fiber amplifiers [J]. Journal of Optical Communi-cations, 1992, 13(1): 33-36.
[64] Chinn S R J E L. Analysis of counter-pumped small-signal fibre Raman amplifiers [J]. Electronics Letters, 1997, 33(7): 607-608. doi:  10.1049/el:19970428
[65] Kidorf H, Rottwitt K, Nissov M, et al. Pump interactions in a 100-nm bandwidth Raman amplifier [J]. IEEE Photonics Technology Letters, 1999, 11(5): 530-532. doi:  10.1109/68.759388
[66] Emori Y, Namiki S. 100 nm bandwidth flat gain Raman amplifiers pumped and gain-equalized by 12-wavelength-channel WDM high power laser diodes[C]//Proceedings of the Optical Fiber Communication Conference and the International Conference on Integrated Optics and Optical Fiber Communi-cation, 1999.
[67] Emori Y, Akasaka Y, Namiki S J E L. Broadband lossless DCF using Raman amplification pumped by multichannel WDM laser diodes [J]. Electronics Letters, 1998, 34(22): 2145. doi:  10.1049/el:19981509
[68] Hansen P B, Jacobovitz-Veselka G, Grüner-Nielsen L, et al. Raman amplification for loss compensation in dispersion compensating fibre modules [J]. Electronics Letters, 1998, 34(11): 1136-1137. doi:  10.1049/el:19980756
[69] Lamon D, Stuyvaert J. Raman amplification[Z]. Porto, Portugal: Universidade do Porto, 2007-2008.
[70] Gnauck A H, Charlet G, Tran P, et al. 25.6-Tb/s WDM Transmission of Polarization-Multiplexed RZ-DQPSK Signals [J]. Journal of Lightwave Technology, 2008, 26(1): 79-84. doi:  10.1109/JLT.2007.912110
[71] Perlin V E, Winful H G. Distributed feedback fiber Raman laser [J]. IEEE Journal of Quantum Electronics, 2001, 37(1): 38-47. doi:  10.1109/3.892722
[72] Hu Y, Broderick N G R. Improved design of a DFB Raman fibre laser [J]. Optics Communications, 2009, 282(16): 3356-3359. doi:  10.1016/j.optcom.2009.05.038
[73] Babin S A, Churkin D V, Kablukov S I, et al. All-fiber widely tunable Raman fiber laser with controlled output spectrum [J]. Optics Express, 2007, 15(13): 8438-8443. doi:  10.1364/OE.15.008438
[74] Bélanger E, Bernier M, Faucher D, et al. High-power and widely tunable all-fiber Raman laser [J]. Journal of Lightwave Technology, 2008, 26(12): 1696-1701. doi:  10.1109/JLT.2008.922337
[75] Thielen P A, Shaw L B, Pureza P C, et al. Small-core As-Se fiber for Raman amplification [J]. Optics Letters, 2003, 28(16): 1406-1408. doi:  10.1364/OL.28.001406
[76] Jackson S D, Anzueto-Sánchez G. Chalcogenide glass Raman fiber laser [J]. Applied Physics Letters, 2006, 88(22): 221106. doi:  10.1063/1.2208369
[77] Feng Y, Taylor L R, Calia D B. 150 W highly-efficient Raman fiber laser [J]. Optics Express, 2009, 17(26): 23678-23683. doi:  10.1364/OE.17.023678
[78] Nilsson J, Sahu J K, Jang J N, et al. Cladding-pumped Raman fiber amplifier[C]//Optical Amplifiers and Their Applications (OAA 2002), 2002: PD2.
[79] Codemard C A, Dupriez P, Jeong Y, et al. High-power continuous-wave cladding-pumped Raman fiber laser [J]. Optics Letters, 2006, 31(15): 2290-2292. doi:  10.1364/OL.31.002290
[80] Baek S H, Roh W B. Single-mode Raman fiber laser based on a multimode fiber [J]. Optics Letters, 2004, 29(2): 153-155. doi:  10.1364/OL.29.000153
[81] Terry N B. An explanation of SRS beam cleanup in graded [J]. Optics Express, 2007, 15(26): 17509-17519. doi:  10.1364/OE.15.017509
[82] Chen Y, Yao T, Xiao H, et al. 3 kW passive-gain-enabled metalized Raman fiber amplifier with brightness enhancement [J]. Journal of Lightwave Technology, 2020, 39(6): 1785-1790.
[83] Xiao Q, Yan P, Li D, et al. Bidirectional pumped high power Raman fiber laser [J]. Optics Express, 2016, 24(6): 6758-6768. doi:  10.1364/OE.24.006758
[84] Li J, Du J, Ma L, et al. Second-order few-mode Raman amplifier for mode-division multiplexed optical communication systems [J]. Optics Express, 2017, 25(2): 810-820. doi:  10.1364/OE.25.000810
[85] Glick Y, Shamir Y, Aviel M, et al. 1.2 kW clad pumped Raman all-passive-fiber laser with brightness enhancement [J]. Optics Letters, 2018, 43(19): 4755-4758. doi:  10.1364/OL.43.004755
[86] Nicholson J W, Yan M F, Wisk P, et al. Raman fiber laser with 81 W output power at 1480 nm [J]. Optics Letters, 2010, 35(18): 3069-3071. doi:  10.1364/OL.35.003069
[87] Codemard C A, Ji J, Sahu J K, et al. 100-W CW cladding-pumped Raman fiber laser at 1120 nm[C]//Proceedings of the SPIE, Fiber Lasers VII: Technology, Systems, and Applications, 2010, 7580: 75801N.
[88] Kablukov S, Dontsova E, Zlobina E, et al. An LD-pumped Raman fiber laser operating below 1 μm [J]. Laser Physics Letters, 2013, 10(8): 085103. doi:  10.1088/1612-2011/10/8/085103
[89] Hanwei Z, Hu X, Pu Z, et al. 119-W monolithic single-mode 1173-nm Raman fiber laser [J]. IEEE Photonics Journal, 2013, 5(5): 1501706. doi:  10.1109/JPHOT.2013.2277071
[90] Liu J, Shen D, Huang H, et al. High-power and highly efficient operation of wavelength-tunable Raman fiber lasers based on volume Bragg gratings [J]. Optics Express, 2014, 22(6): 6605-6612. doi:  10.1364/OE.22.006605
[91] Yao T, Harish A, Sahu J, et al. High-power continuous-wave directly-diode-pumped fiber Raman lasers [J]. Applied Sciences, 2015, 5(4): 1323-1336. doi:  10.3390/app5041323
[92] Glick Y, Fromzel V, Zhang J, et al. High power, high efficiency diode pumped Raman fiber laser [J]. Laser Physics Letters, 2016, 13(6): 065101. doi:  10.1088/1612-2011/13/6/065101
[93] Zlobina E A, Kablukov S I, Wolf A A, et al. Nearly single-mode Raman lasing at 954 nm in a graded-index fiber directly pumped by a multimode laser diode [J]. Optics Letters, 2017, 42(1): 9-12. doi:  10.1364/OL.42.000009
[94] Zlobina E A, Kablukov S I, Wolf A A, et al. Generating high-quality beam in a multimode LD-pumped all-fiber Raman laser [J]. Optics Express, 2017, 25(11): 12581-12587. doi:  10.1364/OE.25.012581
[95] Glick Y, Fromzel V, Zhang J, et al. High-efficiency, 154 W CW, diode-pumped Raman fiber laser with brightness enhancement [J]. Applied Optics, 2017, 56(3): B97-B102. doi:  10.1364/AO.56.000B97
[96] Glick Y, Shamir Y, Wolf A A, et al. Highly efficient all-fiber continuous-wave Raman graded-index fiber laser pumped by a fiber laser [J]. Optics Letters, 2018, 43(5): 1027-1030. doi:  10.1364/OL.43.001027
[97] Evmenova E A, Kablukov S I, Nemov I N, et al. High-efficiency LD-pumped all-fiber Raman laser based on a 100 µm core graded-index fiber [J]. Laser Physics Letters, 2018, 15(9): 095101. doi:  10.1088/1612-202X/aacca7
[98] Shamir Y, Glick Y, Aviel M, et al. 250 W clad pumped Raman all-fiber laser with brightness enhancement [J]. Optics Letters, 2018, 43(4): 711-714. doi:  10.1364/OL.43.000711
[99] Kuznetsov A G, Kablukov S I, Podivilov E V, et al. Brightness enhancement and beam profiles in an LD-pumped graded-index fiber Raman laser [J]. OSA Continuum, 2021, 4(3): 1034-1040. doi:  10.1364/OSAC.421985
[100] Kuznetsov A G, Nemov I N, Wolf A A, et al. Multimode LD-pumped all-fiber Raman laser with excellent quality of 2(nd)-order Stokes output beam at 1019 nm [J]. Opt Express, 2021, 29(11): 17573-17580. doi:  10.1364/OE.425639
[101] Fan C, Chen Y, Yao T, et al. Over 400 W graded-index fiber Raman laser with brightness enhancement [J]. Optics Express, 2021, 29(13): 19441-19449. doi:  https://doi.org/10.1364/OE.427605
[102] Zhang L, Liu C, Jiang H, et al. Kilowatt ytterbium-Raman fiber laser [J]. Optics Express, 2014, 22(15): 18483-18489. doi:  10.1364/OE.22.018483
[103] Rekas M, Schmidt O, Zimer H, et al. Over 200 W average power tunable Raman amplifier based on fused silica step index fiber [J]. Applied Physics B, 2012, 107(3): 711-716. doi:  10.1007/s00340-012-5052-3
[104] Supradeepa V R, Nicholson J W. Power scaling of high-efficiency 1.5 μm cascaded Raman fiber lasers [J]. Optics Letters, 2013, 38(14): 2538-2541. doi:  10.1364/OL.38.002538
[105] Zhang L, Jiang H, Cui S, et al. Integrated ytterbium-Raman fiber amplifier [J]. Optics Letters, 2014, 39(7): 1933-1936. doi:  10.1364/OL.39.001933
[106] Liu J, Tan F, Shi H, et al. High-power operation of silica-based Raman fiber amplifier at 2147 nm [J]. Optics Express, 2014, 22(23): 28383-28389. doi:  10.1364/OE.22.028383
[107] Zhang H, Xiao H, Zhou P, et al. High power Yb-Raman combined nonlinear fiber amplifier [J]. Optics Express, 2014, 22(9): 10248-10255. doi:  10.1364/OE.22.010248
[108] Zhang H, Tao R, Zhou P, et al. 1.5-kW Yb-Raman combined nonlinear fiber amplifier at 1120 nm [J]. IEEE Photonics Technology Letters, 2015, 27(6): 628-630. doi:  10.1109/LPT.2014.2386973
[109] Chen Y, Leng J, Xiao H, et al. High-efficiency all-fiber Raman fiber amplifier with record output power [J]. Laser Physics Letters, 2018, 15(8): 085104-085109. doi:  10.1088/1612-202X/aac428
[110] Chen Y, Leng J, Xiao H, et al. Pure passive fiber enabled highly efficient Raman fiber amplifier with record kilowatt power [J]. IEEE Access, 2019, 7: 28334-28339. doi:  10.1109/ACCESS.2019.2899452
[111] Wang Z, Xiao Q, Huang Y, et al. Dual-wavelength bidirec-tional pumped high-power Raman fiber laser [J]. High Power Laser Science and Engineering, 2019, 7: e5. doi:  10.1017/hpl.2018.67
[112] Chen Y, Yao T, Xiao H, et al. High-power cladding pumped Raman fiber amplifier with a record beam quality [J]. Optics Letters, 2020, 45(8): 2367-2370. doi:  10.1364/OL.388297
[113] Chen Y, Yao T, Huang L, et al. 2 kW high-efficiency Raman fiber amplifier based on passive fiber with dynamic analysis on beam cleanup and fluctuation [J]. Optics Express, 2020, 28(3): 3495-3504. doi:  10.1364/OE.383683
[114] Chen Y, Yao T, Xiao H, et al. Greater than 2 kW all-passive fiber Raman amplifier with good beam quality [J]. High Power Laser Science and Engineering, 2020, 8: e33. doi:  https://doi.org/10.1017/hpl.2020.33
[115] Fan C, Xiao H, Yao T, et al. Kilowatt level Raman amplifier based on 100 microm core diameter multimode GRIN fiber with M(2) = 1.6 [J]. Opt Lett, 2021, 46(14): 3432-3435. doi:  10.1364/OL.431273
[116] Zhang L, Dong J, Feng Y. High-power and high-order random Raman fiber lasers [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(3): 1-6. doi:  10.1109/JSTQE.2017.2759261
[117] Balaswamy V, Harshitha S, Ramachandran S, et al. High power, ultra-high spectral purity, broadly wavelength tunable cascaded Raman fiber laser[C]//Proceedings of the SPIE, Fiber Lasers XVI: Technology and Systems, 2019, 10897: 108970N.
[118] Balaswamy V, Aparanji S, Arun S, et al. High-power, widely wavelength tunable, grating-free Raman fiber laser based on filtered feedback [J]. Optics Letters, 2019, 44(2): 279-282. doi:  10.1364/OL.44.000279
[119] Feng Y, Huang S, Shirakawa A, et al. 589 nm Light Source Based on Raman Fiber Laser [J]. Japanese Journal of Applied Physics, 2004, 43(6A): L722-L724. doi:  10.1143/JJAP.43.L722
[120] Kuznetsov A G, Evmenova E A, Dontsova E I, et al. Frequency doubling of multimode diode-pumped GRIN-fiber Raman lasers [J]. Optics Express, 2019, 27(24): 34760-34768. doi:  10.1364/OE.27.034760
[121] Runcorn T H, Legg T, Murray R T, et al. Fiber-integrated frequency-doubling of a picosecond Raman laser to 560 nm [J]. Optics Express, 2015, 23(12): 15728-15733. doi:  10.1364/OE.23.015728
[122] Chandran A M, Runcorn T H, Murray R T, et al. Nanosecond pulsed 620  nm source by frequency-doubling a phosphosilicate Raman fiber amplifier [J]. Optics Letters, 2019, 44(24): 6025-6028. doi:  10.1364/OL.44.006025
[123] Kablukov S I, Babin S A, Churkin D V, et al. Frequency doubling of a Raman fiber laser [J]. Laser Physics, 2010, 20(2): 365-371. doi:  10.1134/S1054660X10030096
[124] Cui S, Qian J, Zeng X, et al. A watt-level yellow random laser via single-pass frequency doubling of a random Raman fiber laser [J]. Optical Fiber Technology, 2021, 64: 102552. doi:  10.1016/j.yofte.2021.102552
[125] Cui S, Zeng X, Cheng X, et al. Generation of 10 W yellow fiber laser by frequency doubling of cascaded Raman laser [J]. Chinese Journal of Lasers, 2021, 48(16): 1601006. (in Chinese) doi:  10.3788/CJL202148.1601006
[126] Supradeepa V R, Nicholson J W, Feder K. Continuous wave erbium-doped fiber laser with output power of >100 W at 1550 nm in-band core-pumped by a 1480 nm Raman fiber laser[C]//2012 Conference on Lasers and Electro-Optics (CLEO) , 2012: 1-2
[127] Wang X, Zhou P, Zhang H, et al. 100 W-level Tm-doped fiber laser pumped by 1173 nm Raman fiber lasers [J]. Optics Letters, 2014, 39(15): 4329-4332. doi:  10.1364/OL.39.004329
[128] Jackson S D. Mid infrared holmium fiber lasers [J]. IEEE Journal of Quantum Electronics, 2006, 42(2): 187-191. doi:  10.1109/JQE.2005.861824
[129] Wang X, Zhou P, Miao Y, et al. Raman fiber laser-pumped high-power, efficient Ho-doped fiber laser [J]. Journal of the Optical Society of America B, 2014, 31(10): 2476-2479. doi:  10.1364/JOSAB.31.002476
[130] Zhang H, Zhou P, Wang X, et al. Hundred-watt-level high power random distributed feedback Raman fiber laser at 1150 nm and its application in mid-infrared laser generation [J]. Optics Express, 2015, 23(13): 17138-17144. doi:  10.1364/OE.23.017138
[131] Turitsyn S K, Babin S A, El-Taher A E, et al. Random distributed feedback fibre laser [J]. Nature Photonics, 2010, 4(4): 231-235. doi:  10.1038/nphoton.2010.4
[132] Sugavanam S, Sorokina M, Churkin D V. Spectral correlations in a random distributed feedback fibre laser [J]. Nature Communications, 2017, 8: 15514. doi:  10.1038/ncomms15514
[133] Pinto A M R, Lopez-Amo M, Kobelke J, et al. Temperature fiber laser sensor based on a hybrid cavity and a random mirror [J]. Journal of Lightwave Technology, 2012, 30(8): 1168-1172. doi:  10.1109/JLT.2011.2170814
[134] Wang Z, Sun W, Wu H, et al. Long-distance random fiber laser point sensing system incorporating active fiber [J]. Optics Express, 2016, 24(20): 22448-22453. doi:  10.1364/OE.24.022448
[135] Miao S, Zhang W, Song Y, et al. High-resolution random fiber laser acoustic emission sensor [J]. Optics Express, 2020, 28(9): 12699-12708. doi:  10.1364/OE.389135
[136] Tan M, Rosa P, Le S T, et al. Transmission performance improvement using random DFB laser based Raman amplification and bidirectional second-order pumping [J]. Optics Express, 2016, 24(3): 2215-2221. doi:  10.1364/OE.24.002215
[137] Monet F, Boisvert J S, Kashyap R. A simple high-speed random number generator with minimal post-processing using a random Raman fiber laser [J]. Scientific Reports, 2021, 11(1): 13182. doi:  10.1038/s41598-021-92668-0
[138] 许将明. 高功率随机光纤激光及其时频特性研究[D]. 国防科技大学, 2018.

Xu J. The investigation of high power random fiber laser and the respected time-frequency characteristics[D]. Changsha: National University of Defense Technology, 2018. (in Chinese)
[139] Evmenova E A, Kuznetsov A G, Nemov I N, et al. 2nd-order random lasing in a multimode diode-pumped graded-index fiber [J]. Scientific Reports, 2018, 8(1): 17495. doi:  10.1038/s41598-018-35767-9
[140] Zhang H, Ye J, Zhou P, et al. Tapered-fiber-enabled high-power, high-spectral-purity random fiber lasing [J]. Optics Letters, 2018, 43(17): 4152-4155. doi:  10.1364/OL.43.004152
[141] Zhang H, Huang L, Song J, et al. Quasi-kilowatt random fiber laser [J]. Optics Letters, 2019, 44(11): 2613-2616. doi:  10.1364/OL.44.002613
[142] Song J, Ren S, Liu W, et al. Temporally stable fiber amplifier pumped random distributed feedback Raman fiber laser with record output power [J]. Optics Letters, 2021, 46(19): 5031-5034. doi:  10.1364/OL.438352
[143] Chen Y, Fan C, Yao T, et al. Brightness enhancement in random Raman fiber laser based on a graded-index fiber with high-power multimode pumping [J]. Optics Letters, 2021, 46(5): 1185-1188. doi:  10.1364/OL.416740
[144] Bernier M, Faucher D, Vallée R, et al. Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm [J]. Optics Letters, 2007, 32(5): 454-456. doi:  10.1364/OL.32.000454
[145] Fortin V, Bernier M, Carrier J, et al. Fluoride glass Raman fiber laser at 2185 nm [J]. Optics Letters, 2011, 36(21): 4152-4154. doi:  10.1364/OL.36.004152
[146] Fortin V, Bernier M, Faucher D, et al. 3.7 W fluoride glass Raman fiber laser operating at 2231 nm [J]. Opt Express, 2012, 20(17): 19412-19419. doi:  10.1364/OE.20.019412
[147] Bernier M, Fortin V, Caron N, et al. Mid-infrared chalcogenide glass Raman fiber laser [J]. Optics Letters, 2013, 38(2): 127-129. doi:  10.1364/OL.38.000127
[148] Bernier M, Fortin V, El-Amraoui M, et al. 3.77 μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber [J]. Optics Letters, 2014, 39(7): 2052-2055. doi:  10.1364/OL.39.002052
[149] Liu J, Wu J, Chen H, et al. Short-pulsed Raman fiber laser and its dynamics [J]. Science China Physics, Mechanics & Astronomy, 2020, 64(1): 214201.
[150] Bravo M, Fernandez-Vallejo M, Lopez-Amo M. Internal modulation of a random fiber laser [J]. Optics Letters, 2013, 38(9): 1542-1544. doi:  10.1364/OL.38.001542
[151] Yao W, Chen B, Zhang J, et al. High-average-power operation of a pulsed Raman fiber amplifier at 1686 nm [J]. Optics Express, 2015, 23(9): 11007-11012. doi:  10.1364/OE.23.011007
[152] Yang X, Zhang L, Jiang H, et al. Actively mode-locked Raman fiber laser [J]. Optics Express, 2015, 23(15): 19831-19836. doi:  10.1364/OE.23.019831
[153] Kuznetsov A G, Kharenko D S, Podivilov E V, et al. Fifty-ps Raman fiber laser with hybrid active-passive mode locking [J]. Optics Express, 2016, 24(15): 16280-16285. doi:  10.1364/OE.24.016280
[154] Pan W, Zhou J, Zhang L, et al. Rectangular pulse generation from a mode locked Raman fiber laser [J]. Journal of Lightwave Technology, 2019, 37(4): 1333-1337. doi:  10.1109/JLT.2019.2892779
[155] Chamorovskiy A, Rautiainen J, Lyytikäinen J, et al. Raman fiber laser pumped by a semiconductor disk laser and mode locked by a semiconductor saturable absorber mirror [J]. Optics Letters, 2010, 35(20): 3529-3531. doi:  10.1364/OL.35.003529
[156] Schröder J, Alasia D, Sylvestre T, et al. Dynamics of an ultrahigh-repetition-rate passively mode-locked Raman fiber laser [J]. Journal of the Optical Society of America B, 2008, 25(7): 1178-1186. doi:  10.1364/JOSAB.25.001178
[157] Luo Z, Zhong M, Xiong F, et al. Intermode beating mode-locking technique for O-band mixed-cascaded Raman fiber lasers [J]. Optics Letters, 2015, 40(4): 502-505. doi:  10.1364/OL.40.000502
[158] Tarasov N, Perego A M, Churkin D V, et al. Mode-locking via dissipative Faraday instability [J]. Nature Communications, 2016, 7(1): 12441. doi:  10.1038/ncomms12441
[159] de Matos C J S, Popov S V, Taylor J R. Short-pulse, all-fiber, Raman laser with dispersion compensation in a holey fiber [J]. Optics Letters, 2003, 28(20): 1891-1893. doi:  10.1364/OL.28.001891
[160] Lin D, Alam S-U, Teh P S, et al. Tunable synchronously-pumped fiber Raman laser in the visible and near-infrared exploiting MOPA-generated rectangular pump pulses [J]. Optics Letters, 2011, 36(11): 2050-2052. doi:  10.1364/OL.36.002050
[161] Kharenko D S, Efremov V D, Evmenova E A, et al. Generation of Raman dissipative solitons near 1.3 microns in a phosphosilicate-fiber cavity [J]. Optics Express, 2018, 26(12): 15084-15089. doi:  10.1364/OE.26.015084
[162] Chen H, Chen S-P, Jiang Z-F, et al. All-fiberized synchro-nously pumped 1120 nm picosecond Raman laser with flexible output dynamics [J]. Optics Express, 2015, 23(18): 24088-24096. doi:  10.1364/OE.23.024088
[163] Churin D, Olson J, Norwood R A, et al. High-power synchronously pumped femtosecond Raman fiber laser [J]. Optics Letters, 2015, 40(11): 2529-2532. doi:  10.1364/OL.40.002529
[164] Kobtsev S, Kukarin S, Kokhanovskiy A. Synchronously pumped picosecond all-fibre Raman laser based on phosphorus-doped silica fibre [J]. Optics Express, 2015, 23(14): 18548-18553. doi:  10.1364/OE.23.018548
[165] Huang Y, Wang K, Luo Z. Ultrafast Raman fiber laser based on cavity matching scheme and heavily germania-core fiber [J]. Journal of Lightwave Technology, 2019, 37(13): 2914-2919. doi:  10.1109/JLT.2019.2907543
[166] Pan W, Jiang H, Yang X, et al. Ultrafast Raman fiber Laser with Random Distributed Feedback [J]. Laser & Photonics Reviews, 2018, 12(4): 1700326.
[167] Schmidt O, Wirth C, Tsybin I, et al. Average power of 1.1 kW from spectrally combined, fiber-amplified, nanosecond-pulsed sources [J]. Optics Letters, 2009, 34(10): 1567-1569. doi:  10.1364/OL.34.001567
[168] Yao T, Nilsson J. Short-wavelength fiber Raman laser pulse-pumped by multimode laser diode at 806 nm[C]//Speciality Optical Fibres (SOF) Topical Meeting, 2012.
[169] Filippov V, Chamorovskii Y, Kerttula J, et al. Double clad tapered fiber for high power applications [J]. Optics Express, 2008, 16(3): 1929-1944. doi:  10.1364/OE.16.001929
[170] Jain D, Jung Y, Nunez-Velazquez M, et al. Extending single mode performance of all-solid large-mode-area single trench fiber [J]. Optics Express, 2014, 22(25): 31078-31091. doi:  10.1364/OE.22.031078
[171] Distler V, Möller F, Strecker M, et al. Transverse mode instability in a passive fiber induced by Stimulated Raman Scattering [J]. Optics Letters, 2020, 28(15): 22819-22828.
[172] Zhang H, Xiao H, Wang X, et al. Mode dynamics in high-power Yb-Raman fiber amplifier [J]. Optics Letters, 2020, 45(13): 3394-3397. doi:  10.1364/OL.393879
[173] Naderi S, Dajani I, Grosek J, et al. Theoretical and numerical treatment of modal instability in high-power core and cladding-pumped Raman fiber amplifiers [J]. Optics Express, 2016, 24(15): 16550-16565. doi:  10.1364/OE.24.016550
[174] Liu W, Ma P, Zhou P, et al. Effects of four-wave-mixing in high-power Raman fiber amplifiers [J]. Optics Express, 2020, 28(1): 593-606. doi:  10.1364/OE.381761