[1] Graves L R, Smith G A, Apai D, et al. Precision optics manufacturing and control for next-generation large telescopes [J]. Nanomanufacturing and Metrology, 2019, 2: 65-90. doi:  10.1007/s41871-019-00038-2
[2] Kim D, Choi H, Brendel T, et al. Advances in optical engineering for future telescopes [J]. Opto-Electronic Advances, 2021, 4(6): 210040. doi:  10.29026/oea.2021.210040
[3] 范文强, 王志臣, 陈宝刚, 等. 地基大口径拼接镜面主动控制技术综述[J]. 中国光学, 2020, 13(06): 1194-1208. doi:  10.37188/CO.2020-0032

Fan Wenqiang, Wang Zhichen, Chen Baogang, et al. Review of the active control technology of large aperture ground telescopes with segmented mirrors [J]. Chinese Optics, 2020, 13(6): 1194-1208. (in Chinese) doi:  10.37188/CO.2020-0032
[4] 霍银龙, 杨飞, 王富国. 大口径光学望远镜拼接镜面关键技术综述[J]. 中国光学, 2022, 15(05): 973-982. doi:  10.37188/CO.2022-0109

Huo Yinlong, Yang Fei, Wang Guofu. Overview of key technologies for segmented mirrors of large-aperture optical telescopes [J]. Chinese Optics, 2022, 15(5): 973-982. (in Chinese) doi:  10.37188/CO.2022-0109
[5] Jahnke K, Krause O, Rix H W, et al. The need for a multi-purpose, optical-NIR space facility after HST and JWST [J]. Experimental Astronomy, 2021, 51: 765-782. doi:  10.1007/s10686-021-09732-w
[6] Atkinson C, Texter S, Hellekson R, et al. Status of the JWST optical telescope element [C]//Proceedings of SPIE, Space Telescopes and Instrumentation I: Optical, Infrared, and Millimeter, 2016, 6265: 62650T.
[7] Tamai R, Spyromilio J. European extremely large telescope: progress report [C]//Proceedings of SPIE, Ground-based and Airborne Telescopes V, 2014, 9145: 91451E.
[8] Zhang S, Guo X, Yuan S, et al. Insight on the structural changes of glass-ceramics during nanoindentation derived from reactive force-field-based molecular dynamic simulations [J]. Applied Surface Science, 2022, 571: 151375. doi:  10.1016/j.apsusc.2021.151375
[9] 彭利荣, 程强, 曾雪锋等. 高次离轴凸非球面反射镜组合加工(特邀)[J]. 红外与激光工程, 2022, 51(09): 43-49. doi:  10.3788/IRLA20220611

Peng Lirong, Cheng Qiang, Zeng Xuefeng, et al. Combined fabrication of high order off-axis convex aspheric mirror (invited) [J]. Infrared and Laser Engineering, 2022, 51(9): 20220611. (in Chinese) doi:  10.3788/IRLA20220611
[10] 张学忱, 曹国华, 聂风明等. 光学非球面超精密磨削的微振动对成形精度影响研究[J]. 兵工学报, 2012, 33(09): 1066-1069.

Zhang Xuechen, Cao Guohua, Nei Fengming, et al. Study on influence of micro-vibration during the optical aspheric surface ultra-precision grinding on forming accuracy [J]. Acta Armamentarii, 2012, 33(9): 1066-1069. (in Chinese)
[11] Comley P, Morantz P, Shore P, et al. Grinding metre scale mirror segments for the E-ELT ground based telescope [J]. CIRP Annals, 2011, 60(1): 379-382. doi:  10.1016/j.cirp.2011.03.120
[12] Zhang Z Y, Zheng L G. Grinding strategies for machining the off-axis aspherical reaction-bonded SiC mirror blank [J]. Chinese Optics Letters, 2014, 12(1): S12202. doi:  10.3788/COL201412.S12202
[13] Suzuki H, Wajima N, Zahmaty M S S, et al. Precision grinding of aspherical surface-Accuracy improving by on-machine measurement[C]//International Symposium on Advances in Abrasive Technology, 1997: 116-120.
[14] Li C, Sun L, Chen Z, et al. Wheel setting error modeling and compensation for arc envelope grinding of large-aperture aspherical optics [J]. Chinese Journal of Mechanical Engineering, 2022, 35(5): 108. doi:  10.1186/s10033-022-00782-5
[15] Wang J J, Zhang J F, Feng P F, et al. Damage formation and suppression in rotary ultrasonic machining of hard and brittle materials: A critical review [J]. Ceramics International, 2018, 44(2): 1227-1239. doi:  10.1016/j.ceramint.2017.10.050
[16] Hao N L, Tian B Y, Li D Z, et al. Evaluation of grinding-induced subsurface damage in optical glass BK7 [J]. Journal of Materials Processing Technology, 2016, 229: 785-794. doi:  10.1016/j.jmatprotec.2015.11.003