[1] Armstrong Julian, Leigh Matthew, Walton Ian, et al. In vivo size and shape measurement of the human upper airway using endoscopic longrange optical coherence tomography [J]. Optics Express, 2003, 11(15): 1817-1826.
[2] Choi Woo June, Wang Ruikang K. In vivo imaging of functional microvasculature within tissue beds of oral and nasal cavities by swept-source optical coherence tomography with a forward/side-viewing probe [J]. Biomed Opt Express, 2014, 5(8): 2620-2634. doi:  10.1364/BOE.5.002620
[3] Wijesundara Kushal, Zdanski Carlton, Kimbell Julia, et al. Quantitative upper airway imaging with anatomic optical coherence tomography [J]. Am J Respir Crit Care Med, 2006, 173(2): 226-233. doi:  10.1164/rccm.200507-1148OC
[4] Davoudi Bahar, Lindenmaier Andras, Standish Beau A, et al. Noninvasive in vivo structural and vascular imaging of human oral tissues with spectral domain optical coherence tomography [J]. Biomed Opt Express, 2012, 3(5): 826-839. doi:  10.1364/BOE.3.000826
[5] Zysk Adam M, Nguyen Freddy T, Oldenburg Amy L, et al. Optical coherence tomography: A review of clinical development from bench to bedside [J]. Journal of Biomedical Optics, 2007, 12(5): 21-30.
[6] McLaughlin Robert A, Williamson Jonathan P, Phillips Martin J, et al. Applying anatomical optical coherence tomography to quantitative 3 D imaging of the lower airway [J]. Opt Express, 2008, 16(22): 17521-17529. doi:  10.1364/OE.16.017521
[7] Ahn Yeh-Chan, Kim Sung Won, Hwang Sang Seok, et al. Optical imaging of subacute airway remodeling and adipose stem cell engraftment after airway injury [J]. Biomed Opt Express, 2013, 5(1): 312-321.
[8] Han S, El-Abbadi N H, Hanna N, et al. Evaluation of tracheal imaging by optical coherence tomography [J]. Respiration, 2005, 72(5): 537-541. doi:  10.1159/000087680
[9] Ridgway, J. M., James Matthew Ridgway, Gurpreet Ahuja, et al. Imaging of the pediatric airway using optical coherence tomography [J]. Laryngoscope, 2007, 117(12): 2206-2212. doi:  10.1097/MLG.0b013e318145b306
[10] Jing J, Zhang J, Loy A C, et al. High-speed upper-airway imaging using full-range optical coherence tomography [J]. Journal of Biomedical Optics, 2012, 17(11): 110507.
[11] Lucey A D, King A J C, Tetlow G A, et al. Measurement, reconstruction, and flow-field computation of the human pharynx with application to sleep apnea [J]. IEEE Trans Biomed Eng, 2010, 57(10): 2535-2548. doi:  10.1109/TBME.2010.2052808
[12] Ruofei B, Santosh B, Nicusor I, et al. Airway compliance measured by anatomic optical coherence tomography [J]. Biomed Opt Express, 2017, 8(4): 2195-2209. doi:  10.1364/BOE.8.002195
[13] Joseph C J, Lidek Chou, Erica Su, et al. Anatomically correct visualization of the human upper airway using a high-speed long range optical coherence tomography system with an integrated positioning sensor [J]. Sci Rep, 2016, 6: 39443. doi:  10.1038/srep39443
[14] Sharma G K, Ahuja G S, Wiedmann M, et al. Long-range optical coherence tomography of the neonatal upper airway for early diagnosis of intubation-related subglottic injury [J]. American Journal of Respiratory and Critical Care Medicine, 2015, 192(12): 1504-1513.
[15] Lazarow Frances B, Ahuja Gurpreet S, Chin Loy Anthony, et al. Intraoperative long range optical coherence tomography as a novel method of imaging the pediatric upper airway before and after adenotonsillectomy [J]. Int J Pediatr Otorhinolaryngol, 2015, 79(1): 63-70. doi:  10.1016/j.ijporl.2014.11.009
[16] Walsh J H, Leigh M S, Paduch A, et al. Evaluation of pharyngeal shape and size using anatomical optical coherence tomography in individuals with and without obstructive sleep apnoea [J]. J Sleep Res, 2008, 17(2): 230-238. doi:  10.1111/j.1365-2869.2008.00647.x
[17] Leigh Matthew S, Armstrong Julian J, Paduch Alexandre, et al. Anatomical optical coherence tomography for long-term, portable, quantitative endoscopy [J]. IEEE Trans Biomed Eng, 2008, 55(4): 1438-1446. doi:  10.1109/TBME.2007.913409
[18] Wijesundara Kushal, Zdanski Carlton, Kimbell Julia, et al. Quantitative upper airway endoscopy with swept-source anatomical optical coherence tomography [J]. Biomed Opt Express, 2014, 5(3): 788-799. doi:  10.1364/BOE.5.000788
[19] Volgger Veronika, Sharma Giriraj K, Jing Joseph C, et al. Long-range Fourier domain optical coherence tomography of the pediatric subglottis [J]. Int J Pediatr Otorhinolaryngol, 2015, 79(2): 119-126. doi:  10.1016/j.ijporl.2014.11.019
[20] Kirby Miranda, Ohtani Keishi, Nickens Taylor, et al. Reproducibility of optical coherence tomography airway imaging [J]. Biomed Opt Express, 2015, 6(11): 4365-4377. doi:  10.1364/BOE.6.004365
[21] Adams D C, Hariri L P, Miller A J, et al. Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo [J]. Science Translational Medicine, 2016, 8(359): 359ra131.
[22] Chou L, Batchinsky A, Belenkiy S, et al. In vivo detection of inhalation injury in large airway using three-dimensional long-range swept-source optical coherence tomography [J]. Journal of Biomedical Optics, 2014, 19(3): 036018. doi:  10.1117/1.JBO.19.3.036018
[23] Qi Li, Huang Shenghai, Heidari Andrew E, et al. Automatic airway wall segmentation and thickness measurement for long-range optical coherence tomography images [J]. Opt Express, 2015, 23(26): 33992-34006. doi:  10.1364/OE.23.033992
[24] Lee Sang-Won, Heidary Andrew E, Yoon David, et al. Quantification of airway thickness changes in smoke-inhalation injury using in-vivo 3-D endoscopic frequency-domain optical coherence tomography [J]. Biomed Opt Express, 2011, 2(2): 243-254. doi:  10.1364/BOE.2.000243
[25] McNichols R J, Ashok Gowda, Brent A. Development of an endoscopic fluorescence image-guided OCT probe for oral cancer detection[C]//Proceedings of SPIE - The International Society for Optical Engineering, 2001, 6(4): 23-30.
[26] Whiteman Suzanne C, Yang Ying, Gey van Pittius Daniel, et al. Optical coherence tomography: real-time imaging of bronchial airways microstructure and detection of inflammatory/neoplastic morphologic changes [J]. Clin Cancer Res, 2006, 12(3Pt1): 813-818.
[27] Murgu S D, Colt H G. Combined optical coherence tomography and endobronchial ultrasonography for laser-assisted treatment of postintubation laryngotracheal stenosis [J]. Ann Otol Rhinol Laryngol, 2013, 122(5): 299-307. doi:  10.1177/000348941312200503
[28] Shostak E, Hariri L P, Cheng G Z, et al. Needle-based optical coherence tomography to guide transbronchial lymph node biopsy [J]. Journal of Bronchology & Interventional Pulmonology, 2018, 25(3): 189-197.
[29] Hariri L P , Adams D C , Wain J C , et al. Endobronchial optical coherence tomography for low-risk microscopic assessment and diagnosis of idiopathic pulmonary fibrosis in vivo [J]. American Journal of Respiratory & Critical Care Medicine, 2017, 197(7): 949-952.
[30] Miao Y, Choi J H, Chou L D, et al. Automatic proximal airway volume segmentation using optical coherence tomography for assessment of inhalation injury [J]. Journal of Trauma and Acute Care Surgery, 2019, 87(1): S132-S137.
[31] Choi J H, Chou L D, Roberts T R, et al. Point-of-care endoscopic optical coherence tomography detects changes in mucosal thickness in ARDS due to smoke inhalation and burns [J]. Burns , 2019, 45(3): S89-S97.
[32] Sheet D, Banerjee S, Phani S, et al. Transfer learning of tissue photon interaction in optical coherence tomography towardsin vivo histology of the oral mucosa[C]//2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), 2014:1389-1392.
[33] Ae Heidari, Sunny S P, James B, et al. Optical coherence tomography as an oral cancer screening adjunct in a low resource settings [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(1): 7202008.
[34] Sergeev A, Gelikonov V, Gelikonov G, et al. In vivo endoscopic OCT imaging of precancer and cancer states of human mucos [J]. Optics Express, 1997, 1(13): 432-440. doi:  10.1364/OE.1.000432
[35] Cheng-Kuang Lee, Ting-Ta Chi, Chiung-Ting Wu, et al. Diagnosis of oral precancer with optical coherence tompgraphy [J]. Biomed Opt Express, 2012, 3(7): 1632-1646. doi:  10.1364/BOE.3.001632
[36] Nagarajan N, Vasantha J R, Raj J G, et al. A novel design of PCF for supercontinuum source to detect oral cancer using OCT[C]//2015 International Conference on Microwave and Photonics (ICMAP), 2015.
[37] Amd Lee, Cahill L, Liu K, et al. Wide-field in vivo oral OCT imaging [J]. Biomed Opt Express, 2015, 6(7): 2664-2674.
[38] Sinescu C, Duma V F, Canjau S, et al. Dentistry investigations of teeth and dental prostheses using OCT[C]//SPIE Photonics Europe, 2016.
[39] Andrews P M, Wang H W, Wierwille J, et al. Optical coherence tomography of the living human kidney [J]. Journal of Innovative Optical Health Sciences, 2014, 7(2): 1350064.
[40] Li Qian, Onozato Maristela, Andrews Peter M, et al. Three-dimensional high-resolution optical coherence tomography (OCT) imaging of human kidney[C]//International Conference of the IEEE Engineering in Medicine & Biology Society, 2009: 5741-5743.
[41] Buijs Mara, Wagstaff Peter G K, de Bruin Daniel M, et al. An in-vivo prospective study of the diagnostic yield and accuracy of optical biopsy compared with conventional renal mass biopsy for the diagnosis of renal cell carcinoma: The interim analysis [J]. Eur Urol Focus, 2018, 4(6): 978-985. doi:  10.1016/j.euf.2017.10.002
[42] Chihhao Liu, Yong Du, Manmohan Singh, et al. Combined optical coherence tomography and optical coherence elastography for glomerulonephritis classification[C]//SPIE BiOS, 2016.
[43] Ma Zhenhe, Ding Ning, Yu Yao, et al. Quantification of cerebral vascular perfusion density via optical coherence tomography based on locally adaptive regional growth [J]. Appl Opt, 2018, 57(35): 10117-10124. doi:  10.1364/AO.57.010117
[44] Glaßer S, Hoffmann T, Boese A, et al. Virtual inflation of the cerebral artery wall for the integrated exploration of OCT and histology data [J]. Computer Graphics Forum, 2017, 36(8): 57-68. doi:  10.1111/cgf.12994
[45] Oxana V. Semyachkina-Glushkovskaya, Vladislav V. Lychagov, Olga A. Bibikova, et al. The assessment of pathological changes in cerebral blood flow in hypertensive rats with stress-induced intracranial hemorrhage using Doppler OCT: Particularities of arterial and venous alterations [J]. Photonics and Lasers in Medicine, 2013, 2(2): 109-116.
[46] Aguirre A D, Chen Y, Fujimoto J G, et al. Depth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography [J]. Optics Letters, 2006, 31(23): 3459-3461. doi:  10.1364/OL.31.003459
[47] Chen W , Du C, Pan Y. Cerebral capillary flow imaging by wavelength-division-multiplexing swept-source optical Doppler tomography [J]. J Biophotonics, 2018, 11(8): 201800004.
[48] Rodriguez C, Szu J I, Eberle M M, et al. Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography [J]. Neurophotonics, 2014, 1(2): 025004. doi:  10.1117/1.NPh.1.2.025004
[49] Askaruly S, Ahn Y, Kim H, et al. Quantitative evaluation of skin surface roughness using optical coherence tomography in vivo [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(1): 7202308.
[50] Mogensen M, Thrane L, Jørgensen T M, et al. OCT imaging of skin cancer and other dermatological diseases [J]. Journal of Biophotonics, 2010, 2(6-7): 442-451.
[51] Ziolkowska M, Philipp C M, Liebscher J, et al. OCT of healthy skin, actinic skin and NMSC lesions [J]. Medical Laser Application, 2009, 24(4): 256-264. doi:  10.1016/j.mla.2009.07.003
[52] Holmes J, Schuh S, Bowling F L, et al. Dynamic optical coherence tomography is a new technique for imaging skin around lower extremity wounds [J]. The International Journal of Lower Extremity Wounds, 2019, 18(1): 65-74.
[53] Silver F H, Shah R G. Mechanical spectroscopy and imaging of skin components in vivo: Assignment of the observed moduli [J]. Skin Res Technol, 2019, 25(1): 47-53. doi:  10.1111/srt.12594
[54] Jansen S M, De B, Van B H M I, et al. Optical techniques for perfusion monitoring of the gastric tube after esophagectomy: A review of technologies and thresholds [J]. Diseases of the Esophagus Official Journal of the International Society for Diseases of the Esophagus, 2018, 31(6): 1-11.
[55] Ji Q, Sudheendran N, Liu C H , et al. Raman spectroscopy complements optical coherent tomography in tissue classification and cancer detection [J]. Biological Trace Element Research, 2015, 12: 2078539.
[56] Sanne M. Jansen, Mitra Almasian, Leah S. Wilk, et al. Feasibility of optical coherence tomography (OCT) for intra-operative detection of blood flow during gastric tube reconstruction [J]. Sensors (Basel), 2018, 18(5): 1331.
[57] Yu X, Luo Y, Liu X, et al. Towards high speed imaging of cellular structures in rat colon using micro-optical coherence tomography [J]. IEEE Photonics Journal, 2016, 8(4): 3900308.
[58] Tsai Tsung-Han, Lee Hsiang-Chieh, Ahsen Osman O, et al. Ultrahigh speed endoscopic optical coherence tomography for gastroenterology [J]. Biomed Opt Express, 2014, 5(12): 4387-4404. doi:  10.1364/BOE.5.004387