[1] Li Yajuan, Song Shalei, Li Faquan, et al. High-precision measurements of lower atmospheric temperature based on pure rotational Raman lidar [J]. Chinese Journal of Geophysics, 2015, 58(7): 2294-2305. (in Chinese) doi:  10.6038/cjg20150708
[2] Di Huige, Hua Dengxin. Research status and progress of lidar for atmosphere in China (Invited) [J]. Infrared and Laser Engineering, 2021, 50(3): 20210032. (in Chinese) doi:  10.3788/IRLA20210032
[3] Yan Zhaoai, Hu Xiong, Guo Wenjie, et al. Near space Doppler lidar techniques and applications (Invited) [J]. Infrared and Laser Engineering, 2021, 50(3): 20210100. (in Chinese) doi:  10.3788/IRLA20210100
[4] Bösenberg J. Ground-based differential absorption lidar for water-vaper and temperature profiling: Methodology [J]. Appl Opt, 1998, 37(18): 3845-3860. doi:  10.1364/AO.37.003845
[5] Hua D X, Kobayashi T. Ultraviolet Rayleigh-Mie lidar by use of a multicavity Fabry-Perot filter for accurate temperature profiling of the troposphere [J]. Appl Opt, 2005, 44(30): 6474-6478. doi:  10.1364/AO.44.006474
[6] Liu Z S, Bi D C, Song X Q, et al. Iodine-filter-based high spectral resolution lidar for atmospheric temperature measurements [J]. Opt Lett, 2009, 34(18): 2712-2714. doi:  10.1364/OL.34.002712
[7] Xu Bingqing, Han Yan, Xu Wenjing, et al. Design and simulation of Raman lidar with small field of view for atmospheric temperature and humidity detection [J]. Infrared and Laser Engineering, 2021, 50(9): 20200410. (in Chinese) doi:  10.3788/IRLA20200410
[8] Wang Qing, Gao Chunqing. Research progress on eye-safe all-solid-state single-frequency lasers [J]. Chinese Journal of Lasers, 2021, 48(5): 0501004. (in Chinese) doi:  10.3788/CJL202148.0501004
[9] Gao Jian, Zhou Anran, Sun Dongsong, et al. An identification method of seed laser injection in Doppler lidar [J]. Infrared and Laser Engineering, 2018, 47(2): 0230001. (in Chinese) doi:  10.3788/IRLA201847.0230001
[10] Cheng Zhongtao, Liu Dong, Liu Chong, et al. Multi-longitudinal-mode high-spectral-resolution lidar [J]. Acta Optica Sinica, 2017, 37(4): 0401001. (in Chinese) doi:  10.3788/AOS201737.0401001
[11] Gao Fei, Nan Hengshuai, Huang Bo, et al. Technical realization and system simulation of ultraviolet multi-mode high-spectral-resolution lidar for measuring atmospheric aerosols [J]. Acta Physica Sinica, 2018, 67(3): 030701. (in Chinese) doi:  10.7498/aps.67.20172036
[12] Jin Y, Sugimoto N, Ristori P, et al. Measurement method of high spectral resolution lidar with a multimode laser and a scanning Mach-Zehnder interferometer [J]. Appl Opt, 2017, 56(21): 5990-5995. doi:  10.1364/AO.56.005990
[13] Bruneau D, Blouzon F, Spatazza J, et al. Direct-detection wind lidar operating with a multimode laser [J]. Appl Opt, 2013, 52(20): 4941-4949. doi:  10.1364/AO.52.004941
[14] Shen Fahua, Yu Aiai, Dong Jihui, et al. Dual-frequency quad-edge frequency discrimination photoelectric detection technique based on single fabry-perot etalon [J]. Acta Optica Sinica, 2014, 34(3): 0312005. (in Chinese) doi:  10.3788/AOS201434.0312005
[15] Shen F, Zhuang P, Shi W, et al. Fabry-Perot etalon based ultraviolet high-spectral-resolution lidar for tropospheric temperature and aerosol measurement [J]. Appl Phys B, 2018, 124(7): 138. doi:  10.1007/s00340-018-7003-0
[16] Shen F, Xie C, Qiu C, et al. Fabry-Perot etalon based ultraviolet tri-frequency high-spectral-resolution lidar for wind, temperature and aerosol measurements from 0.2 to 35 km altitude [J]. Appl Opt, 2018, 57(31): 9328-9340. doi:  10.1364/AO.57.009328