[1] 胡伟达, 李庆, 陈效双, 等. 具有变革性特征的红外光电探测器[J]. 物理学报, 2019, 68(12): 120701. doi:  10.7498/aps.68.20190281

Hu W D, Li Q, Chen X S. Recent progress on advanced infrared photodetectors [J]. Acta Physica Sinica, 2019, 68(12): 120701. (in Chinese) doi:  10.7498/aps.68.20190281
[2] Long M, Wang P, Fang H, et al. Progress, challenges, and opportunities for 2D material based photodetectors [J]. Advanced Functional Materials, 2019, 29(19): 201803807.
[3] Cai S, Xu X, Yang W, et al. Materials and designs for wearable photodetectors [J]. Advanced Materials, 2019, 31(18): 201808138.
[4] Wang P, Xia H, Li Q, et al. Sensing infrared photons at room temperature: from bulk materials to atomic layers [J]. Small, 2019, 15(46): 201904396.
[5] Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics [J]. Nature Photonics, 2010, 4(9): 611-22. doi:  10.1038/nphoton.2010.186
[6] Guo N, Xiao L, Gong F, et al. Light-driven WSe2-ZnO junction field-effect transistors for high-performance photodetection [J]. Advanced Science, 2020, 7(1): 201901637.
[7] Mak K F, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides [J]. Nature Photonics, 2016, 10(4): 216-26. doi:  10.1038/nphoton.2015.282
[8] Tu L, Cao R, Wang X, et al. Ultrasensitive negative capacitance phototransistors [J]. Nature Communications, 2020, 11(1): s41467.
[9] Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors [J]. Nature Nanotechnology, 2011, 6(3): 147-50. doi:  10.1038/nnano.2010.279
[10] Wang Y, Wu P, Wang Z, et al. Air-stable low-symmetry narrow-bandgap 2D sulfide niobium for polarization photodetection [J]. Advanced Materials, 2020, 32(45): 202005037.
[11] Shi Z, Cao R, Khan K, et al. Two-dimensional tellurium: progress, challenges, and prospects [J]. Nano-Micro Letters, 2020, 12(1): s40820.
[12] Wang X, Shen H, Chen Y, et al. Multimechanism synergistic photodetectors with ultrabroad spectrum response from 375 nm to 10 μm [J]. Advanced Science, 2019, 6(15): 201901050.
[13] Wang Z, Wang P, Wang F, et al. A noble metal dichalcogenide for high-performance field-effect transistors and broadband photodetectors [J]. Advanced Functional Materials, 2020, 30(5): 201907945.
[14] Wu F, Xia H, Sun H, et al. AsP/InSe Van Der Waals tunneling heterojunctions with ultrahigh reverse rectification ratio and high photosensitivity [J]. Advanced Functional Materials, 2019, 29(12): 201900314.
[15] Xu Y, Shi Z, Shi X, et al. Recent progress in black phosphorus and black-phosphorus-analogue materials: properties, synthesis and applications [J]. Nanoscale, 2019, 11(31): 14491-527. doi:  10.1039/C9NR04348A
[16] 罗曼, 吴峰, 张莉丽, 等. 二维材料偏振响应光电探测[J]. 南通大学学报(自然科学版), 2019, 18(3): 1-10.

Luo Man, Wu Feng, Zhang Lili, et al. Detection of polarized light using two-dimensional atomic materials [J]. Journal of Nantong University (Natural Science Edition), 2019, 18(3): 1-10. (in Chinese)
[17] Wang X, Wang P, Wang J, et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics [J]. Advanced Materials, 2015, 27(42): 6575-6581. doi:  10.1002/adma.201503340
[18] Wang P, Wang Y, Ye L, et al. Ferroelectric localized field-enhanced ZnO nanosheet ultraviolet photodetector with high sensitivity and low dark current [J]. Small, 2018, 14(22): e180042.
[19] Long M, Gao A, Wang P, et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus [J]. Science Advance, 2017, 3(6): e1700589.
[20] Bullock J, Amani M, Cho J, et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature [J]. Nature Nanotechnology, 2020, 15(3): 203-206. doi:  10.1038/s41565-019-0623-7
[21] Tang Y, Wang Z, Wang P, et al. WSe2 photovoltaic device based on intramolecular p-n junction [J]. Small, 2019, 15(12): e1805545. doi:  10.1002/smll.201805545
[22] Kim S, Myeong G, Shin W, et al. Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays [J]. Nature Nanotechnology, 2020: 203-206.
[23] Wu F, Li Q, Wang P, et al. High efficiency and fast van der Waals hetero-photodiodes with a unilateral depletion region [J]. Nature Communication, 2019, 10(1): 4663. doi:  10.1038/s41467-019-12707-3
[24] Miao J, Hu W, Jing Y, et al. Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays [J]. Small, 2015, 11(20): 2392-2398. doi:  10.1002/smll.201403422
[25] Wang P, Liu S, Luo W, et al. Arrayed Van Der Waals broadband detectors for dual-band detection [J]. Advanced Materials, 2017, 29(16): 201604439.
[26] Tong L, Huang X, Wang P, et al. Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature [J]. Nature Communication, 2020, 11(1): 2308. doi:  10.1038/s41467-020-16125-8
[27] Zhang W, Chiu M H, Chen C H, et al. Role of metal contacts in high-performance phototransistors based on WSe2 monolayers [J]. Acs Nano, 2014, 8(8): 8653-8661. doi:  10.1021/nn503521c
[28] Zhou X, Hu X, Zhou S, et al. Tunneling diode based on WSe2/SnS2 heterostructure incorporating high detectivity and responsivity [J]. Advanced Materials, 2018, 30(7): 201703286.
[29] Ye L, Li H, Chen Z, et al. Near-infrared photodetector based on MoS2/black phosphorus heterojunction [J]. Acs Photonics, 2016, 3(4): 692-629. doi:  10.1021/acsphotonics.6b00079
[30] Long M, Liu E, Wang P, et al. Broadband photovoltaic detectors based on an atomically thin heterostructure [J]. Nano Letters, 2016, 16(4): 2254-2259. doi:  10.1021/acs.nanolett.5b04538