[1] Zhang Feng, Guo Jinjia, Liu Chunhao, et al. Development of an underwater combined Raman-fluorescence detection system and preliminary test [J]. Infrared and Laser Engineering, 2018, 47(6): 0606006. (in Chinese) doi:  10.3788/IRLA201847.0606006
[2] Chen Li, Li Danyang, Yang Feng, et al. Fabrication of array flexible paper-based SERS microarray for bacterial detection [J]. Optics and Precision Engineering, 2020, 28(1): 110-118. (in Chinese) doi:  10.3788/OPE.20202801.0110
[3] He Yuqing, Wei Shuaiying, Guo Yixin, et al. Research progress of remote detection with ultraviolet Raman spectroscopy [J]. Chinese Optics, 2019, 12(6): 1249-1259. (in Chinese) doi:  10.3788/co.20191206.1249
[4] Lv Jiaming. Quantitative detection of rivaroxaban based on far-IR absorbance spectroscopy and Raman spectroscopy [J]. Infrared and Laser Engineering, 2021, 50(2): 20210038. (in Chinese) doi:  10.3788/IRLA20210038
[5] Zhang Xu, Yu Mingxin, Zhu Lianqing, et al. Raman mineral recognition method based on all-optical diffraction deep neural network [J]. Infrared and Laser Engineering, 2020, 49(10): 20200221. (in Chinese) doi:  10.3788/IRLA20200221
[6] Hou Xiangyu, Qiu Teng. Defects- and interface-enhanced Raman scattering in low-dimensional optoelectronic materials [J]. Chinese Optics, 2021, 14(1): 170-181. (in Chinese) doi:  10.37188/CO.2020-0145
[7] Liu Qingsheng, Guo Jinjia, Yang Dewang, et al. A compact underwater Raman spectroscopy system with high sensitivity [J]. Optics and Precision Engineering, 2018, 26(1): 8-13. (in Chinese) doi:  10.3788/OPE.20182601.0008
[8] Xu Hao, Zhu Yongkang, Lu Yanfei, et al. Development and biomedical application of raman probe [J]. Laser & Optoelectronics Progress, 2019, 56(11): 110005. (in Chinese)
[9] Shu Chi, Zheng Wei, Wang Zhuo, et al. Development and characterization of a disposable submillimeter fiber optic Raman needle probe for enhancing real-time in vivo deep tissue and biofluids Raman measurements [J]. Optics Letters, 2021, 46(20): 5197-5200. doi:  10.1364/OL.438713
[10] Milenko K, Yerolatsitis S, Aksnes A, et al. Micro-lensed negative-curvature fibre probe for Raman spectroscopy [J]. Sensors, 2021, 21(24): 8434. doi:  10.3390/s21248434
[11] Yerolatsitis S, Kufcsák A, Ehrlich K, et al. Sub millimetre flexible fibre probe for background and fluorescence free Raman spectroscopy [J]. J Biophotonics, 2021, 14(10): e202000488.
[12] Short M A, Lam S, McWilliams A, et al. Develop-ment and preliminary results of an endoscopic Raman probe for potential in vivo diagnosis of lung cancers [J]. Optics Letters, 2008, 33(7): 711-713. doi:  10.1364/OL.33.000711
[13] Wang Jianfeng, Bergholt M S, Zheng Wei, et al. Development of a beveled fiber-optic confocal Raman probe for enhancing in vivo epithelial tissue Raman measurements at endoscopy [J]. Optics Letters, 2013, 38(13): 2321-2323. doi:  10.1364/OL.38.002321
[14] Jaillon F, Zheng Wei, Huang Zhiwei. Beveled fiber-optic probe couples a ball lens for improving depth-resolved fluorescence measurements of layered tissue: Monte Carlo simulations [J]. Physics in Medicine & Biology, 2008, 53(4): 937-951.
[15] Matousek P. Enhancement of laser radiation coupled into turbid media by using a unidirectional mirror [J]. Journal of the Optical Society of America B, 2008, 25(7): 1223-1230. doi:  10.1364/JOSAB.25.001223
[16] Nubling R K, Harrington J A. Launch conditions and mode coupling in hollow-glass waveguides [J]. Optical Engineering, 1998, 37(9): 2454-2458. doi:  10.1117/1.601768