[1] Sen P, Chen B, Garg G, et al. Dual photography [C]//ACM SIGGRAPH, ACM, 2005: 745-755.
[2] Duarte M F, Davenport M A, Takhar D, et al. Single-pixel imaging via compressive sampling [J]. IEEE Signal Process Mag, 2008, 25(2): 83-91. doi:  10.1109/MSP.2007.914730
[3] Welsh S S, Edgar M P, Bowman R, et al. Fast full-color computational imaging with single-pixel detectors [J]. Opt Express, 2013, 21(20): 23068-23074. doi:  10.1364/OE.21.023068
[4] Bian L, Suo J, Situ G, et al. Multispectral imaging using a single bucket detector [J]. Sci Rep, 2016, 6(1): 24752. doi:  10.1038/spre24752
[5] Rousset F, Ducros N, Peyrin F, et al. Time-resolved multispectral imaging based on an adaptive single-pixel camera [J]. Opt Express, 2018, 26(8): 10550-10558. doi:  10.1364/OE.26.010550
[6] Zhang Z, Liu S, Peng J, et al. Simultaneous spatial, spectral, and 3D compressive imaging via efficient Fourier single-pixel measurements [J]. Optica, 2018, 5(3): 315-319. doi:  10.1364/OPTICA.5.000315
[7] Edgar M P, Gibson G M, Bowman R W, et al. Simultaneous real-time visible and infrared video with single-pixel detectors [J]. Sci Rep, 2015, 5(1): 1-8.
[8] Chan W L, Charan K, Takhar D, et al. A single-pixel terahertz imaging system based on compressed sensing [J]. Appl Phys Lett, 2008, 93(12): 121105. doi:  10.1063/1.2989126
[9] Watts C M, Shrekenhamer D, Montoya J, et al. Terahertz compressive imaging with metamaterial spatial light modulators [J]. Nat Photonics, 2014, 8(8): 605-609. doi:  10.1038/nphoton.2014.139
[10] Stantchev R I, Sun B, Hornett S M, et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector [J]. Sci Adv, 2016, 2(6): e1600190. doi:  10.1126/sciadv.1600190
[11] Studer V, Bobin J, Chahid M, et al. Compressive fluorescence microscopy for biological and hyperspectral imaging [J]. Proc Natl Acad Sci U S A, 2012, 109(26): E1679-E1687. doi:  10.1073/pnas.1119511109
[12] Radwell N, Mitchell K J, Gibson G M, et al. Single-pixel infrared and visible microscope [J]. Optica, 2014, 1(5): 285-289. doi:  10.1364/OPTICA.1.000285
[13] Wu Y, Ye P, Mirza I O, et al. Experimental demonstration of an optical-sectioning compressive sensing microscope (CSM) [J]. Opt Express, 2010, 18(24): 24565-24578. doi:  10.1364/OE.18.024565
[14] Tajahuerce E, Durán V, Clemente P, et al. Image transmission through dynamic scattering media by single-pixel photodetection [J]. Opt Express, 2014, 22(14): 16945-16955. doi:  10.1364/OE.22.016945
[15] Durán V, Soldevila F, Irles E, et al. Compressive imaging in scattering media [J]. Opt Express, 2015, 23(11): 14424-14433. doi:  10.1364/OE.23.014424
[16] Zhang Y, Edgar M P, Sun B, et al. 3D single-pixel video [J]. J Opt, 2016, 18(3): 035203. doi:  10.1088/2040-8978/18/3/035203
[17] Sun B, Edgar M P, Bowman R, et al. 3D computational imaging with single-pixel detectors [J]. Science, 2013, 340(6134): 844-847. doi:  10.1126/science.1234454
[18] Howland G A, Dixon P B, Howell J C. Photon-counting compressive sensing laser radar for 3D imaging [J]. Appl Opt, 2011, 50(31): 5917-5920. doi:  10.1364/AO.50.005917
[19] Sun M J, Edgar M P, Phillips D B, et al. Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning [J]. Opt Express, 2016, 24(10): 10476-10485. doi:  10.1364/OE.24.010476
[20] Zhang Z, Zhong J. Three-dimensional single-pixel imaging with far fewer measurements than effective image pixels [J]. Opt Lett, 2016, 41(11): 2497-2500. doi:  10.1364/OL.41.002497
[21] Yu W K, Liu X F, Yao X R, et al. Complementary compressive imaging for the telescopic system [J]. Sci Rep, 2014, 4(1): 1-6.
[22] Gong W, Zhao C, Yu H, et al. Three-dimensional ghost imaging lidar via sparsity constraint [J]. Sci Rep, 2016, 6(1): 26133. doi:  10.1038/s41598-016-0001-8
[23] Pittman T, Shih Y, Strekalov D, et al. Optical imaging by means of two photonquantum entanglement [J]. Phys Rev A, 1995, 52(5): R3429. doi:  10.1103/PhysRevA.52.R3429
[24] Strekalov D, Sergienko A, Klyshko D, et al. Observation of two photon "ghost" interference and diffraction [J]. Phys Rev Lett, 1995, 74(18): 3600. doi:  10.1103/PhysRevLett.74.3600
[25] Bennink R S, Bentley S J, Boyd R W. "Two photon" coincidence imaging witha classical source [J]. Phys Rev Lett, 2002, 89(11): 113601. doi:  10.1103/PhysRevLett.89.113601
[26] Valencia A, Scarcelli G, D'Angelo M, et al. Two-photon imaging with thermal light [J]. Phys Rev Lett, 2005, 94(6): 063601. doi:  10.1103/PhysRevLett.94.063601
[27] Shapiro J H. Computational ghost imaging [J]. Phys Rev A, 2008, 78(6): 061802. doi:  10.1103/PhysRevA.78.061802
[28] Edgar M P, Gibson G M, Padgett M J. Principles and prospects for single-pixel imaging [J]. Nat Photonics, 2019, 13(1): 13-20. doi:  10.1038/s41566-018-0300-7
[29] Clemente P, Durán V, Tajahuerce E, et al. Optical encryption based on computational ghost imaging [J]. Opt Lett, 2010, 35(14): 2391-2393. doi:  10.1364/OL.35.002391
[30] Erkmen B I. Computational ghost imaging for remote sensing [J]. JOSA A, 2012, 29(5): 782-789. doi:  10.1364/JOSAA.29.000782
[31] Ferri F, Magatti D, Lugiato L A, et al. Differential ghost imaging [J]. Phys Rev Lett, 2010, 104(25): 253603. doi:  10.1103/PhysRevLett.104.253603
[32] Zhao C, Gong W, Chen M, et al. Ghost imaging lidar via sparsity constraints [J]. Appl Phys Lett, 2012, 101(14): 141123. doi:  10.1063/1.4757874
[33] Katz O, Bromberg Y, Silberberg Y. Compressive ghost imaging [J]. Appl Phys Lett, 2009, 95(13): 131110. doi:  10.1063/1.3238296
[34] Deng Chao, Suo Jinli, Zhang Zhili, et al. Coding and decoding of optical information in single-pixel imaging[J]. Infrared and Laser Engineering, 2019, 48(6): 0603004. (in Chinese)
[35] Liu Y, Zhang X. Metamaterials: A new frontier of science and technology [J]. Chem Soc Rev, 2011, 40(5): 2494-2507. doi:  10.1039/c0cs00184h
[36] Smith D R, Padilla W J, Vier D C, et al. Composite medium with simultaneously negative permeability and permittivity [J]. Phys Rev Lett, 2000, 84(18): 4184. doi:  10.1103/PhysRevLett.84.4184
[37] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction [J]. Science, 2001, 292(5514): 77-79. doi:  10.1126/science.1058847
[38] Chen H T, Taylor A J, Yu N. A review of metasurfaces: Physics and applications [J]. Rep Prog Phys, 2016, 79(7): 076401. doi:  10.1088/0034-4885/79/7/076401
[39] Quevedo-Teruel O, Chen H, Díaz-Rubio A, et al. Roadmap on metasurfaces [J]. J Opt, 2019, 21(7): 073002. doi:  10.1088/2040-8986/ab161d
[40] Glybovski S B, Tretyakov S A, Belov P A, et al. Metasurfaces: From microwaves to visible [J]. Phys Rep, 2016, 634: 1-72. doi:  10.1016/j.physrep.2016.04.004
[41] Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction [J]. Science, 2011, 334(6054): 333-337. doi:  10.1126/science.1210713
[42] Ni X, Emani N K, Kildishev A V, et al. Broadband light bending with plasmonic nanoantennas [J]. Science, 2012, 335(6067): 427-427. doi:  10.1126/science.1214686
[43] Huang L, Chen X, Muhlenbernd H, et al. Dispersionless phase discontinuities for controlling light propagation [J]. Nano Lett, 2012, 12(11): 5750-5755. doi:  10.1021/nl303031j
[44] Sun S, Yang K Y, Wang C M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces [J]. Nano Lett, 2012, 12(12): 6223-6229. doi:  10.1021/nl3032668
[45] Aieta F, Genevet P, Kats M A, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces [J]. Nano Lett, 2012, 12(9): 4932-4936. doi:  10.1021/nl302516v
[46] Ni X, Ishii S, Kildishev A V, et al. Ultra-thin, planar, Babinet-inverted plasmonic metalenses [J]. Light Sci Appl, 2013, 2(4): e72-e72. doi:  10.1038/lsa.2013.28
[47] Pors A, Nielsen M G, Eriksen R L, et al. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces [J]. Nano Lett, 2013, 13(2): 829-834. doi:  10.1021/nl304761m
[48] Chen X, Huang L, Mühlenbernd H, et al. Dual-polarity plasmonic metalens for visible light [J]. Nat Commun, 2012, 3(1): 1-6.
[49] Zeng J, Li L, Yang X, et al. Generating and separating twisted light by gradient–rotation split-ring antenna metasurfaces [J]. Nano Lett, 2016, 16(5): 3101-3108. doi:  10.1021/acs.nanolett.6b00360
[50] Zeng J, Gao J, Luk T S, et al. Structuring light by concentric-ring patterned magnetic metamaterial cavities [J]. Nano Lett, 2015, 15(8): 5363-5368. doi:  10.1021/acs.nanolett.5b01738
[51] Yang Y, Wang W, Moitra P, et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation [J]. Nano Lett, 2014, 14(3): 1394-1399. doi:  10.1021/nl4044482
[52] Arbabi A, Horie Y, Bagheri M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission [J]. Nat Nanotechnol, 2015, 10(11): 937-943. doi:  10.1038/nnano.2015.186
[53] Yu N, Aieta F, Genevet P, et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces [J]. Nano Lett, 2012, 12(12): 6328-6333. doi:  10.1021/nl303445u
[54] Pors A, Nielsen M G, Bozhevolnyi S I. Broadband plasmonic half-wave plates in reflection [J]. Opt Lett, 2013, 38(4): 513-515. doi:  10.1364/OL.38.000513
[55] Jiang S C, Xiong X, Hu Y S, et al. Controlling the polarization state of light with a dispersion-free metastructure [J]. Phys Rev X, 2014, 4(2): 021026.
[56] Zhao Y, Alù A. Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates [J]. Nano Lett, 2013, 13(3): 1086-1091. doi:  10.1021/nl304392b
[57] Kruk S, Hopkins B, Kravchenko I I, et al. Invited Article: Broadband highly efficient dielectric metadevices for polarization control [J]. APL Photonics, 2016, 1(3): 030801. doi:  10.1063/1.4949007
[58] Huang L, Chen X, Mühlenbernd H, et al. Three-dimensional optical holography using a plasmonic metasurface [J]. Nat Commun, 2013, 4(1): 1-8.
[59] Zheng G, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency [J]. Nat Nanotechnol, 2015, 10(4): 308-312. doi:  10.1038/nnano.2015.2
[60] Wen D, Yue F, Li G, et al. Helicity multiplexed broadband metasurface holograms [J]. Nat Commun, 2015, 6(1): 1-7.
[61] Mueller J P B, Rubin N A, Devlin R C, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization [J]. Phys Rev Lett, 2017, 118(11): 113901. doi:  10.1103/PhysRevLett.118.113901
[62] Lee G Y, Sung J, Lee B. Recent advances in metasurface hologram technologies (Invited paper) [J]. ETRI Journal, 2019, 41(1): 10-22. doi:  10.4218/etrij.2018-0532
[63] Huang L, Zhang S, Zentgraf T. Metasurface holography: from fundamentals to applications [J]. Nanophotonics, 2018, 7(6): 1169-1190. doi:  10.1515/nanoph-2017-0118
[64] Li L, Cui T J, Ji W, et al. Electromagnetic reprogrammable coding-metasurface holograms [J]. Nat Commun, 2017, 8(1): 1-7. doi:  10.1038/s41467-016-0009-6
[65] Liu H C, Yang B, Guo Q, et al. Single-pixel computational ghost imaging with helicity-dependent metasurface hologram [J]. Sci Adv, 2017, 3(9): e1701477. doi:  10.1126/sciadv.1701477
[66] Zhao Haixiao, Guo Yan, Li Peiming, et al. Investigation of single-pixel imaging in signal-to-noise ratio and its development at special wavelength [J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011010. (in Chinese) doi:  10.3788/LOP202158.1011010
[67] Zheng P, Dai Q, Li Z, et al. Metasurface-based key for computational imaging encryption investigation of single-pixel imaging in signal-to-noise ratio and its development at special wavelength [J]. Sci Adv, 2021, 7(21): eabg0363. (in Chinese) doi:  10.1126/sciadv.abg036310.3788/LOP202158.1011010
[68] Nikolova N K. Introduction to Microwave Imaging[M]. Cambridge: Cambridge University Press, 2017.
[69] Chen X. Subspace-based optimization method for solving inverse-scattering problems [J]. IEEE Transactions on Geoscience & Remote Sensing, 2009, 48(1): 42-49.
[70] Palmeri R, Bevacqua M T, Crocco L, et al. Microwave imaging via distorted iterated virtual experiments [J]. IEEE Transactions on Antennas and Propagation, 2016, 65(2): 829-838.
[71] Ghasr M T, Abou-Khousa M A, Kharkovsky S, et al. Portable real-time microwave camera at 24 GHz [J]. IEEE Transactions on Antennas and Propagation, 2011, 60(2): 1114-1125.
[72] Soumekh M. Synthetic Aperture Radar Signal Processing[M]. New York: Wiley, 1999.
[73] Ahmed S S, Schiessl A, Schmidt L P. A novel fully electronic active real-time imager based on a planar multistatic sparse array [J]. IEEE Trans Microw Theory Tech, 2011, 59(12): 3567-3576. doi:  10.1109/TMTT.2011.2172812
[74] Gonzalez-Valdes B, Allan G, Rodriguez-Vaqueiro Y, et al. Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging [J]. IEEE Transactions on Antennas and Propagation, 2013, 62(4): 1716-1722.
[75] Jackson D R, Onliner A A. Leaky-wave Antennas [M]//Balanis C A. Modern Antenna Handbook, New York: Wiley, 2008.
[76] Holloway C L, Dienstfrey A, Kuester E F, et al. A discussion on the interpretation and characterization of metafilms/ metasurfaces: The two-dimensional equivalent of metamaterials [J]. Metamaterials, 2009, 3(2): 100-112. doi:  10.1016/j.metmat.2009.08.001
[77] Hunt J, Driscoll T, Mrozack A, et al. Metamaterial apertures for computational imaging [J]. Science, 2013, 339(6117): 310-313. doi:  10.1126/science.1230054
[78] Hunt J, Gollub J, Driscoll T, et al. Metamaterial microwave holographic imaging system [J]. JOSA A, 2014, 31(10): 2109-2119. doi:  10.1364/JOSAA.31.002109
[79] Sleasman T, Imani M F, Gollub J N, et al. Dynamic metamaterial aperture for microwave imaging [J]. Appl Phys Lett, 2015, 107(20): 204104. doi:  10.1063/1.4935941
[80] Sleasman T, Boyarsky M, Imani M F, et al. Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies [J]. JOSA B, 2016, 33(6): 1098-1111. doi:  10.1364/JOSAB.33.001098
[81] Diebold A V, Imani M F, Sleasman T, et al. Phaseless computational ghost imaging at microwave frequencies using a dynamic metasurface aperture [J]. Appl Opt, 2018, 57(9): 2142-2149. doi:  10.1364/AO.57.002142
[82] Diebold A V, Imani M F, Sleasman T, et al. Phaseless coherent and incoherent microwave ghost imaging with dynamic metasurface apertures [J]. Optica, 2018, 5(12): 1529-1541. doi:  10.1364/OPTICA.5.001529
[83] Liu Weitao, Sun Shuai, Hu Hongkang, et al. Progress and prospect for ghost imaging of moving objects [J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011001. (in Chinese) doi:  10.3788/LOP202158.1011001