[1] Sheng Jing, Chiu Yijui. Lin Bingjing Determination of a coupling equation for milling parameters based on optimal cutting temperature [J]. The International Journal of Advanced Manufacturing Technology, 2018, 98(1-4): 129-141.
[2] Ge Yingfei, Xu Jiuhua, Fu Yucan. Cutting temperature investigation when high-speed milling of SiCP/Al composites [J]. Materials Science Forum, 2011, 697-698: 198-203. doi:  10.4028/www.scientific.net/MSF.697-698.198
[3] Piotr Zgórniak, Wojciech Stachurski, Dariusz Ostrowski. Application of thermographic measurements for the determination of the impact of selected cutting parameters on the temperature in the workpiece during milling process [J]. Journal of Mechanical Engineering, 2016, 62(11): 657-664.
[4] Ch Sateesh Kumar, Saroj Kumar patel, Anshuman Das. Experimental and numerical investigations on the temperature distribution in PVD AlTiN coated and uncoated Al2O3/TiCN mixed ceramic cutting tools in hard turning of AISI 52100 steel [J]. IOP Conference Series: Materials Science and Engineering, 2018, 338(1): 012021.
[5] Li Hongyun, Sun Xiaogang, Yuan Guibin. Accurate measuring temperature with infrared thermal imager [J]. Optics and Precision Engineering, 2007, 15(9): 1366-1341. (in Chinese)
[6] Lane B, Whitenton E, Madhavan V, et al. Uncertainty of temperature measurements by infrared thermography for metal cutting applications [J]. Metrologia, 2013, 50(6): 637-653. doi:  10.1088/0026-1394/50/6/637
[7] Ke Veina, Zhu Daoqiang, Cai Guoqiang. Simulation and analysis of spectral emissivity of/ metal [J]. Acta aeronautica et Astronautica Sinica, 2010, 31(11): 2139-2145. (in Chinese)
[8] Shi Deheng, Liu Qionglan, Zhu Zunlue, et al. Experimental study of the relationships between the spectral emissivity of brass and the temperature in the oxidizing environment [J]. Infrared Physics and Technology, 2014, 64: 119-124. doi:  10.1016/j.infrared.2014.03.001
[9] Shi Deheng, Liu Qionglan, Zhu Zunlue, et al. Study on relationships between the spectral emissivity of DC01 steel and temperature in an oxidizing environment [J]. International Journal of Thermophysics, 2014, 35: 1545-1556. doi:  10.1007/s10765-014-1709-y
[10] Wang Peng, Xie Zhi, Meng Hongji, et al. Effects of the temperature and roughness on the metal emissivity[C]//27th Chinese Control and Decision Conference, 2015: 3206-3209.
[11] HangJin Jo, King Jonathan L, Kyle Blomstr, et al. Spectral emissivity of oxidized and roughened metal surfaces [J]. International Journal of Heat and Mass Transfer, 2017, 115: 1065-1071. doi:  10.1016/j.ijheatmasstransfer.2017.08.103
[12] Shen Jiuli, Zhang Yucun, Xing Tingting. The study on the measurement accuracy of non-steady state temperature field under different emissivity using infrared thermal image [J]. Infrared Physics and Technology, 2018, 94: 207-213. doi:  10.1016/j.infrared.2018.09.022
[13] Hartsfield T M, Iverson A J , Baldwin J K. Reflectance determination of optical spectral emissivity of metal surfaces at ambient conditions [J]. Journal of Applied Physics, 2018, 124: 105107. doi:  10.1063/1.5042601
[14] Zhao Wanmeng, Li Longfei, Yuan Zeye, et al. Direction spectral emissivity of Ti6Al4V alloy [J]. Acta Optica Sinica, 2020, 40(8): 0830002. (in Chinese)
[15] Jean Pierre Monchau, Mario Marchetti, Laurent Ibos, et al. Emissivity measurements of building and civil engineering materials: A new device for measuring emissivity [J]. International Journal of Thermophysics, 2014, 35: 1817-1831. doi:  10.1007/s10765-013-1442-y
[16] Ibos L, Marchetti M, Boudenne A, et al. Infrared emissivity measurement device: principle and applications [J]. Measurement Science & Technology, 2006, 17: 2950-2956.
[17] Liu Yufang, Hu Zhili, Shi Deheng, et al. Experimental investigation of emissivity of steel [J]. International Journal of Thermophysics, 2013, 34(3): 496-503. doi:  10.1007/s10765-013-1421-3
[18] Zhang Min, Yang Guang, Zhang Li, et al. Application of ZrB2 thin film as a low emissivity filmat high temperature [J]. Applied Surface Science, 2020, 527: 146763. doi:  10.1016/j.apsusc.2020.146763
[19] Bai Jingchen, Yu Qingbo, Hu Xianzhong, et al. Surface emissivity measurement technique based on infrared thermal imager [J]. Journal of Northeastern University (Natural Science), 2013, 34(12): 1747-1750. (in Chinese)
[20] Wang Zhingren, Li Dongyang, Ruan Banchao, et al. Experimental research on the measurement emissivity for metal reflective surface [J]. Machinery Design & Manufacture, 2016(6): 226-228. (in Chinese)
[21] Zhang Yucun, Chen Yiming, Fu Xianbin, et al. A method for reducing the influence of measuring distance on infrared thermal imager temperature measurement accuracy [J]. Applied Thermal Engineering, 2016, 100: 1095-1101. doi:  10.1016/j.applthermaleng.2016.02.119
[22] Li Wenjun, Xu Yongda, Zheng Yongjun. Match method of emissivity measurement based on infrared thermal imager and surface thermometer [J]. China Measurement & Test, 2017, 43(6): 12-15. (in Chinese)
[23] Liao Panpan, Zhang Jiamin. Research on influence factors for measuring and method of correction in infrared thermometer [J]. Infrared Technology, 2017, 39(2): 173-177. (in Chinese)
[24] Xiao Binan, Gong Lliehang, Zeng Rui. Analysis and simulation of metallic infrared emissivity [J]. Infrared Technology, 2008,30(6): 358-360. (in Chinese)
[25] Yu Kun, Liu Yufang, Jia Guangrui, et al. Analysis on factors affecting the infrared spectral emissivity of steel surface [J]. Infrared Technology, 2011, 33(5): 289-292. (in Chinese)
[26] Pan Yawen. Experimental investigation of effect material emissivity elements[D]. Xinxiang: Graduate School of Henan Normal University, 2013. (in Chinese)
[27] Evgeniy Petukhov, Mariya Romodanovskaya. The temperature measurements in the formation zone during high-pressure jet cutting [J]. Materials Today:Proceedings, 2019, 19: 2471-2474. doi:  10.1016/j.matpr.2019.08.111
[28] Degroot M H. Probability and Statistics[M]. New York: Addison-Wesley, 1975.
[29] Bickel P J, Doksum K A. Mathematical Statistics[M]. New York: Chapman and Hall/CRC, 1977.