[1] Su Xianyu, Zhang Qican, Chen Wenjing. Structured light 3D imaging technology [J]. Chinese Journal of Lasers, 2014, 41(2): 0209001. (in Chinese) doi:  10.3788/CJL201441.0209001
[2] Xie Zexiao, Li Xuyong, Xin Shaohui, et al. Underwater line structured-light self-scan three-dimension measuring technology [J]. Chinese Journal of Lasers, 2010, 37(8): 2010-2014. (in Chinese) doi:  10.3788/cjl20103708.2010
[3] Xie Liangliang, Tu Dawei, Zhang Xu, et al. Deep sea in situ laser scanning binocular stereo vision imaging system [J]. Journal of Instrumentation, 2020, 41(6): 106-114.
[4] Ding Zhongjun, Zhao Ziyi, Zhang Chuntang, et al. 3D reconstruction of deep sea geomorphologic linear structured light based on manned submersible [J]. Infrared and Laser Engineering, 2019, 48(5): 0503001. (in Chinese) doi:  10.3788/IRLA201948.0503001
[5] He X, Tong N, Hu X. High-resolution imaging and 3-D reconstruction of precession targets by exploiting sparse apertures [J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1212-1220. doi:  10.1109/TAES.2017.2668058
[6] 陈士杰. 海底管道探测与三维可视化技术的研究与实现[D]. 杭州: 浙江大学, 2020.

Chen Shijie. Research and implementation of submarine pipeline detection and 3D visualization technology [D]. Hangzhou: Zhejiang University, 2020. (in Chinese)
[7] Schjølberg I, Gjersvik T B, Transeth A A, et al. Next generation subsea inspection, maintenance and repair operations [J]. IFAC-Papers OnLine, 2016, 49(23): 434-439. doi:  https://doi.org/10.1016/j.ifacol.2016.10.443
[8] Gomes L, Bellon O R P, Silva L. 3D reconstruction methods for digital preservation of cultural heritage: A survey [J]. Pattern Recognition Letters, 2014, 50: 3-14. doi:  https://doi.org/10.1016/j.patrec.2014.03.023
[9] Pellen F, Jezequel V, Zion G, et al. Detection of an underwater target through modulated lidar experiments at grazing incidence in a deep wave basin [J]. Appl Opt, 2012, 51: 7690-7700.
[10] Meline A, Triboulet J, Jouvencel B. Comparative study of two 3D reconstruction methods for underwater archaeology[C]//Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 7-12 October 2012, Algarve, Portugal, 2012: 740-745.
[11] Eric M, Kovacic R, Berginc G, et al. The impact of the latest 3D technologies on the docu-mentation of underwater heritage sites[C]//Proceedings of the IEEE Digital Heritage International Congress, 28 October-1 November, 2013, Marseille, France, 2013: 281-288.
[12] Bruno F, Gallo A, Muzzupappa M, et al. 3D documentation and monitoring of the experi-mental cleaning operations in the underwater archaeological site of Baia (Italy)[C]//Proceedings of the IEEE Digital Heritage International Congress, 28 October-1 November, 2013, Marseille, France, 2013: 105-112.
[13] Johnson-Roberson M, Bryson M, Friedman A, et al. High-resolution underwater robotic vision-based mapping and three-dimensional reconstruction for archaeology [J]. J Field Robot, 2017, 34: 625-643. doi:  https://doi.org/10.1002/rob.21658
[14] Jørgensen U, Skjetne R. Real-time 3D reconstruction of under-water sea-ice topography by observations from a mobile robot in the arctic [J]. IFAC Proceedings Volumes, 2013, 46(33): 310-315. doi:  10.3182/20130918-4-JP-3022.00054
[15] Bleier M, van der Lucht J, Nüchter A. Scout3D-An underwater laser scanning system for mobile mapping[C]//The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2019, XLII-2-W18: 13-18.
[16] 杨宇. 水下多通道真彩色三维重建与颜色还原方法研究[D]. 中国海洋大学, 2014.

Yang Yu. Research on underwater multi-channel true color 3D reconstruction and color restoration [D]. Qingdao: Ocean Univer-sity of China, 2014. (in Chinese)
[17] 徐望博. 基于结构光的河流水下地貌探测[D]. 华北水利水电大学, 2018.

Xu Wangbo. Underwater geomorphic detection based on structured light [D]. Zhengzhou: North China University of Water Resources and Hydropower, 2018. (in Chinese)
[18] Akkiraju N, Edelsbrunner H, Facello M, et al. Alpha shapes: definition and software[EB/OL]. (1997-10-30)[2021-09-18]. http://www.geom.uiuc.edu/.