[1] Lucchesi D, Anselmo L, Bassan M, et al. General relativity measurements in the field of earth with laser-ranged satellites: state of the art and perspectives [J]. Universe, 2019, 5(6): 141. doi:  10.3390/universe5060141
[2] Choi E J, Bang S C, Sung K P, et al. Design and development of high-repetition-rate satellite laser ranging system [J]. Journal of Astronomy and Space Sciences, 2015, 32: 209-219. doi:  10.5140/JASS.2015.32.3.209
[3] Prochazka I, Kodet J, Blazej J, et al. Identification and calibration of one-way delays in satellite laser ranging systems [J]. Advances in Space Research, 2017, 59(10): 2466-2472. doi:  10.1016/j.asr.2017.02.027
[4] Pearlman M R, Noll C E, Pavlis E C, et al. The ILRS: Approaching 20 years and planning for the future [J]. Journal of Geodesy, 2019, 93(11): 2161-2180. doi:  10.1007/s00190-019-01241-1
[5] Deng Huarong, Wu Zhingbo, Li Pu, et al. Improvement research on SLR data deviation by using polarization technology for energy regulation [J]. Infrared and Laser Engineering, 2017, 46(9): 0917005. (in Chinese) doi:  0917005
[6] Liu Bo, Chen Nianjiang, Zhang Zhongping, et al. Technology of micro-pulse satellite laser ranging [J]. Infared and Laser Engineering, 2008, 37(S3): 234-237. (in Chinese)
[7] Meisel B, Angermann D, Krügel M, et al. Refined approaches for terrestrial reference frame computations [J]. Advances in Space Research, 2005, 36(3): 350-357. doi:  10.1016/j.asr.2005.04.057
[8] Ding Renjie, Wu Zhibo, Deng Huarong, et al. Research and design of high automation satellite laser ranging system [J]. Laser & Infrared, 2017, 47(9): 1102-1107. (in Chinese) doi:  10.3969/j.issn.1001-5078.2017.09.008
[9] Zajdel R, Sośnica K, Drożdżewski M, et al. Impact of network constraining on the terrestrial reference frame realization based on SLR observations to LAGEOS [J]. Journal of Geodesy, 2019, 93(11): 2293-2313. doi:  10.1007/s00190-019-01307-0
[10] Torrence M H, Klosko S M, Christodoulidis D C. The construction and testing of normal points at goddard space flight center[C]//Proceedings of 5th International Workshop on Laser Ranging Instrumentation, 1984: 506-516.
[11] Appleby G M, Sinclair A. Formation of on-site normal points[C]// Proceedings of 8th International Workshop on Laser Ranging Instrumentation, 1992, 9: 19-25.
[12] Conklin B M, Davis D, Edge V, et al. NSLR PC software packages for normal point and acquisition generation[C]// Proceedings of the 9th International Workshop on Laser Ranging Instrumentation, 1994: 1090-1095.
[13] Paunonen M. Adaptive median filtering for preprocessing of time series measurements[C]//Proceedings of the 8th International Workshop on Laser Ranging Instrumentation, 1992, 2: 44-50.
[14] Sinclair A T. Re-statement of herstmonceux normal point recommendation[R/OL]. 1997. https://ilrs.gsfc.nasa.gov/data_and_products/data/npt/npt_algorithm.html.
[15] Sinclair A T. Neubert R, Appleby G M. The LAGEOS centre of mass correction for different detection techniques[C]//Proceedings of Annual Eurolas Meeting, 1995: 31-36.
[16] Seemüller, W W. Missions working group report[C]//Proceedings of Seventh General Assembly of ILRS, 2002.
[17] Appleby G, Deleflie F, Desch N, et al. ILRS governing board meeting report[R].Vienna, Austria: EGU General Assembly, 2012.
[18] Clarke C B, Degnan J J, McGarry J F, et al. Processing single photon data for maximum range accuracy[C]//Proceedings of the 18th International Workshop on Laser Ranging Instrumentation, 2013.
[19] Degnan J J. A data processing approach to high precision, high return rate kHz SLR stations[C]//Proceedings of the 21th International Workshop on Laser Ranging Instrumentation, 2018.
[20] Noll C E, Ricklefs R, Horvath J, et al. Information resources supporting scientific research for the international laser ranging service [J]. Journal of Geodesy, 2019, 93(11): 2211-2225. doi:  10.1007/s00190-018-1207-2
[21] Bayer I, Gibbs P, Wilkinson M. Herstmonceux time bias system as a possible real-time QC tool[C]//Proceedings of the 14th International Workshop on Laser Ranging Instrumentation, 2004.
[22] Kang Wenyun, Song Xiaoquan, Wei Zhen. Weak signal detecting method of laser ranging for space target in daytime [J]. Infrared and Laser Engineering, 2014, 43(9): 3026-3029. (in Chinese) doi:  10.3969/j.issn.1007-2276.2014.09.042
[23] Cheng Bohui, Wei Zhibin, Qu Feng, et al. The realization of daytime laser ranging on Beijing satellite laser observatory [J]. Bulletin of Surveying and Mapping, 2015(3): 58-60. (in Chinese)
[24] Gurtner W, Pop E, Utzinger J. Improvements in the Automation of the Zimmerwald SLR Station[C]//Proceedings of the 13th International Workshop on Laser Ranging Instrumentation, 2002.
[25] Zhang Zhongping. Screen preprocess method for SLR data [J]. Annals of Shanghai Observatory Academia Sinca, 1993: 118-125. (in Chinese)
[26] 董雪. 高重复频率空间碎片激光测距系统研究[D]. 长春: 2014.

Dong Xue. Research of high repetition space debris laser ranging system[D]. Changchun: Graduate School of Chinese Academy of Sciences(Changchun Institute of Optics, Precision Mechanics and Physics, Chinese Academy of Sciences), 2014. (in Chinese)
[27] Heiner M, Schreiber U, Brandl N. Recursive filter algorithm for noise reduction in SLR[C]//Proceedings of the 15th International Workshop on Laser Ranging Instrumentation, 2006.
[28] Ricklefs R L, Shelus P J. Poisson filtering of laser ranging data[C]//Proceedings of the 8th International Workshop on Laser Ranging Instrumentation, 1992, 9: 26-33.
[29] Rodriguez J, Appleby G, Otsubo T, et al. Assessing and enforcing single-photon returns: poisson filtering[C]//Proceedings of the 20th International Workshop on Laser Ranging Instrumentation, 2016.
[30] Clarke C B, Degnan J J, Mcgarry J F, et al. Background noise suppression for increased data acceptance[C]//Proceedings of the 19th International Workshop on Laser Ranging Instrumentation, 2014.
[31] Eckl J J, Schreiber K U. Single photon tracking under difficult condition[C]//Proceedings of 2015 ILRS Technical Workshop, 2015.
[32] Liu Yanyu, Wu Xiaoping, Gao Hao, et al. Data pre-processing algorithm of satellite laser ranging based on curve recognition from points cloud [J]. Journal of Geodesy and Geodynamics, 2011, 31(1): 105. (in Chinese)
[33] Li Xi, Tang Rufeng, Li Zhulian, et al. Laser ranging data processing based on the analysis of the binary image [J]. Chinese Journal of Lasers, 2014, 41(12): 1208005. (in Chinese)
[34] Li Xue, Zhu Zhaokun, Wu Wentang, et al. Simulated analysis of processing satellite laser ranging data using neural networks trained by DeepLabCut[C]//Processings of the 2019 IEEE 5th International Conference on Computer and Communiactions, 2019: 468-472.
[35] Otsubo T, Sherwood R A, Appleby G M, et al. Center-of-mass corrections for sub-cm-precision laser-ranging targets: Starlette, Stella and LARES [J]. Journal of Geodesy, 2014, 89(4): 303-312.
[36] Fitzmaurice M W, Minott P, Abshire J B, et al. Prelaunch testing of the laser geodynamic satellite (LAGEOS): NASA-TP-1062, G-7702-F16[R/OL]. NASA, 1977: 1.
[37] Neubert R. An analytical model of satellite signature effects[C]//Proceedings of 9th International Workshop on Laser Ranging Instrumentation, 1994: 82-91.
[38] Fan Jianxing, Yang Fumin, Chen Qixiu. Center-of-mass of satellites used for laser ranging [J]. Acta Photonica Sinica, 2000, 29(11): 1012-1016. (in Chinese)
[39] Otsubo T, Appleby G M. System-dependent center-of-mass correction for spherical geodetic satellites [J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B4): 2201-2210.
[40] Liu Yuan, An Ning, Fan Cunbo, at al. Influence of shape effect of angle reflector on ranging precision of satellite lser ranging system [J]. Laser & Optoelectronics Progress, 2018, 55(11): 110101. (in Chinese)
[41] Wilkinson M, Rodrguez J, Otsubo T, et al. Implementing consistent clipping in the reduction of SLR data from SGF, Herstmonceux[C]//Proceedings of 21th International Workshop on Laser Ranging Instrumentation, 2018.
[42] Kucharski D, Kirchner G, Otsubo T, et al. A method to calculate zero-signature satellite laser ranging normal points for millimeter geodesy-a case study with Ajisai [J]. Earth, Planets and Space, 2015, 67(1): 34. doi:  10.1186/s40623-015-0204-4
[43] Riepl S, Blobfeld M, Schuler T. Processing of SLR observations with an optimal wiener filter-an alternative way to calculate normal points[C]//Proceedings of 21th International Workshop on Laser Ranging Instrumentation, 2018.
[44] 刘源. 球形卫星高重复频率激光测距数据处理方法研究[D]. 北京: 中国科学大学, 2019.

Liu Yuan. Research on data processing method of high frequency laser ranging of spherical satellite[D]. Beijing: University of Chinese Academy of Sciences, 2019.
[45] Samain E, Mangin J F, Veillet C, et al. Millimetric Lunar Laser Ranging at OCA (Observatoire de la Côte d’Azur) [J]. Astronomy and Astrophysics Supplement Series, 1998, 130(2): 235-244. doi:  10.1051/aas:1998227
[46] He Yun, Liu Qi, Tian Wei, et al. Study on laser ranging for satellite on the second lagrange point of earth-moon system [J]. Journal of Deep Space Exploration, 2017, 4(2): 131-137. (in Chinese)
[47] Wu Zhibo, Deng Huarong, Zhang Haifeng, et al. Interference and avoidance of atmospheric backscattering on satellite laser ranging with high repetition rate [J]. Infrared and Laser Engineering, 2017, 46(2): 0206002. (in Chinese)