[1] Cundiff S T, Ye J. Colloquium: Femtosecond optical frequency combs [J]. Reviews of Modern Physics, 2003, 75(1): 325-342. doi:  10.1103/RevModPhys.75.325
[2] Fortier T, Baumann E. 20 years of developments in optical frequency comb technology and applications [J]. Communica-tions Physics, 2019, 2(1): 153. doi:  10.1038/s42005-019-0249-y
[3] Schliesser A, Picqué N, Hänsch T W. Mid-infrared frequency combs [J]. Nature Photonics, 2012, 6(7): 440-449. doi:  10.1038/nphoton.2012.142
[4] Qin Z, Hai T, Xie G, et al. Black phosphorus Q-switched and mode-locked mid-infrared Er: ZBLAN fiber laser at 3.5 μm wavelength [J]. Optics Express, 2018, 26(7): 8224. doi:  10.1364/OE.26.008224
[5] Wei C, Lyu Y, Shi H, et al. Mid-infrared Q-switched and mode-locked fiber lasers at 2.87 μm based on carbon nanotube [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(4): 1-6.
[6] Cruz F C, Maser D L, Johnson T, et al. Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy [J]. Optics Express, 2015, 23(20): 26814. doi:  10.1364/OE.23.026814
[7] Soboń G, Martynkien T, Mergo P, et al. High-power frequency comb source tunable from 2.7 to 4.2 μm based on difference frequency generation pumped by an Yb-doped fiber laser [J]. Optics Letters, 2017, 42(9): 1748. doi:  10.1364/OL.42.001748
[8] Ycas G, Giorgetta F R, Baumann E, et al. High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 μm [J]. Nature Photonics, 2018, 12(4): 202-208. doi:  10.1038/s41566-018-0114-7
[9] Bao C, Yuan Z, Wu L, et al. Architecture for microcomb-based GHz-mid-infrared dual-comb spectroscopy [J]. Nature Communi-cations, 2021, 12(1): 6573. doi:  10.1038/s41467-021-26958-6
[10] Jin Y, Cristescu S M, Harren F J M, et al. Femtosecond optical parametric oscillators toward real-time dual-comb spectroscopy [J]. Applied Physics B, 2015, 119(1): 65-74. doi:  10.1007/s00340-015-6035-y
[11] Muraviev A V, Smolski V O, Loparo Z E, et al. Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs [J]. Nature Photonics, 2018, 12(4): 209-214. doi:  10.1038/s41566-018-0135-2
[12] Grassani D, Tagkoudi E, Guo H, et al. Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum [J]. Nature Communications, 2019, 10(1): 1553. doi:  10.1038/s41467-019-09590-3
[13] Guo H, Weng W, Liu J, et al. Nanophotonic supercontinuum-based mid-infrared dual-comb spectroscopy [J]. Optica, 2020, 7(9): 1181. doi:  10.1364/OPTICA.396542
[14] Borri S, Insero G, Santambrogio G, et al. High-precision molecular spectroscopy in the mid-infrared using quantum cascade lasers [J]. Applied Physics B, 2019, 125(1): 18. doi:  10.1007/s00340-018-7119-2
[15] Meng B, Singleton M, Shahmohammadi M, et al. Mid-infrared frequency comb from a ring quantum cascade laser [J]. Optica, 2020, 7(2): 162. doi:  10.1364/OPTICA.377755
[16] Wang C Y, Herr T, Del’haye P, et al. Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators [J]. Nature Communications, 2013, 4(1): 1345. doi:  10.1038/ncomms2335
[17] Yu M, Okawachi Y, Griffith A G, et al. Silicon-chip-based mid-infrared dual-comb spectroscopy [J]. Nature Communications, 2018, 9(1): 1869. doi:  10.1038/s41467-018-04350-1
[18] Haus H A. Mode-locking of lasers [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(6): 1173-1185. doi:  10.1109/2944.902165
[19] Chen G, Li W, Wang G, et al. Generation of coexisting high-energy pulses in a mode-locked all-fiber laser with a nonlinear multimodal interference technique [J]. Photonics Research, 2019, 7(2): 187. doi:  10.1364/PRJ.7.000187
[20] Qin C, Jia K, Li Q, et al. Electrically controllable laser frequency combs in graphene-fibre microresonators [J]. Light: Science & Applications, 2020, 9(1): 185.
[21] Kivisto S, Okhotnikov O G. 600-fs mode-locked Tm–Ho-doped fiber laser synchronized to optical clock with optically driven semiconductor saturable absorber [J]. IEEE Photonics Technology Letters, 2011, 23(8): 477-479. doi:  10.1109/LPT.2011.2109945
[22] Wang Q, Geng J, Luo T, et al. Mode-locked 2 μm laser with highly thulium-doped silicate fiber [J]. Optics Letters, 2009, 34(23): 3616. doi:  10.1364/OL.34.003616
[23] Kivisto S, Hakulinen T, Guina M, et al. Tunable Raman soliton source using mode-locked Tm–Ho fiber laser [J]. IEEE Photonics Technology Letters, 2007, 19(12): 934-936. doi:  10.1109/LPT.2007.898877
[24] Antipov S, Hudson D D, Fuerbach A, et al. High-power mid-infrared femtosecond fiber laser in the water vapor transmission window [J]. Optica, 2016, 3(12): 1373. doi:  10.1364/OPTICA.3.001373
[25] Woodward R I, Majewski M R, Jackson S D. Mode-locked dysprosium fiber laser: Picosecond pulse generation from 2.97 to 3.30 μm [J]. APL Photonics, 2018, 3(11): 116106. doi:  10.1063/1.5045799
[26] Li J, Hudson D D, Liu Y, et al. Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror [J]. Optics Letters, 2012, 37(18): 3747. doi:  10.1364/OL.37.003747
[27] Ma J, Qin Z, Xie G, et al. Review of mid-infrared mode-locked laser sources in the 2.0 μm–3.5 μm spectral region [J]. Applied Physics Reviews, 2019, 6(2): 021317. doi:  10.1063/1.5037274
[28] Wang Y, Jobin F, Duval S, et al. Ultrafast Dy3+: fluoride fiber laser beyond 3 μm [J]. Optics Letters, 2019, 44(2): 395-398. doi:  10.1364/OL.44.000395
[29] Mirov S B, Fedorov V V, Martyshkin D V, et al. Progress in mid-IR Cr2+ and Fe2+ doped Ⅱ-Ⅵ materials and lasers [Invited] [J]. Optical Materials Express, 2011, 1(5): 898. doi:  10.1364/OME.1.000898
[30] Nagl N, Gröbmeyer S, Pervak V, et al. Directly diode-pumped, Kerr-lens mode-locked, few-cycle Cr: ZnSe oscillator [J]. Optics Express, 2019, 27(17): 24445. doi:  10.1364/OE.27.024445
[31] Pushkin A V, Migal E A, Tokita S, et al. Femtosecond graphene mode-locked Fe: ZnSe laser at 4.4 µm [J]. Optics Letters, 2020, 45(3): 738. doi:  10.1364/OL.384300
[32] Frolov M P, Gordienko V M, Korostelin Y V, et al. Fe 2+ -doped CdSe single crystal: Growth, spectroscopic and laser properties, potential use as a 6 µm broadband amplifier [J]. Laser Physics Letters, 2017, 14(2): 025001. doi:  10.1088/1612-202X/aa5130
[33] Frolov M P, Korostelin Y V, Kozlovsky V I, et al. 2 mJ room temperature Fe: CdTe laser tunable from 5.1 to 6.3 μm [J]. Optics Letters, 2019, 44(22): 5453. doi:  10.1364/OL.44.005453
[34] Silva de Oliveira V, Ruehl A, Masłowski P, et al. Intensity noise optimization of a mid-infrared frequency comb difference-frequency generation source [J]. Optics Letters, 2020, 45(7): 1914. doi:  10.1364/OL.391195
[35] Foreman S M, Jones D J, Ye J. Flexible and rapidly configurable femtosecond pulse generation in the mid-IR [J]. Optics Letters, 2003, 28(5): 370. doi:  10.1364/OL.28.000370
[36] He J, Li Y. Design of on-chip mid-IR frequency comb with ultra-low power pump in near-IR [J]. Optics Express, 2020, 28(21): 30771. doi:  10.1364/OE.401881
[37] Lu J, Surya J B, Liu X, et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250, 000%/W [J]. Optica, 2019, 6(12): 1455. doi:  10.1364/OPTICA.6.001455
[38] Chang L, Li Y, Volet N, et al. Thin film wavelength converters for photonic integrated circuits [J]. Optica, 2016, 3(5): 531. doi:  10.1364/OPTICA.3.000531
[39] Yan M, Luo P L, Iwakuni K, et al. Mid-infrared dual-comb spectroscopy with electro-optic modulators [J]. Light: Science & Applications, 2017, 6(10): 1-8.
[40] Lind A J, Kowligy A, Timmers H, et al. Mid-infrared frequency comb generation and spectroscopy with few-cycle pulses and χ(2) nonlinear optics [J]. Physical Review Letters, 2020, 124(13): 133904. doi:  10.1103/PhysRevLett.124.133904
[41] Reid D T, Gale B J S, Sun J. Frequency comb generation and carrier-envelope phase control in femtosecond optical parametric oscillators [J]. Laser Physics, 2008, 18(2): 87-103. doi:  10.1134/S1054660X08020011
[42] Iwakuni K, Porat G, Bui T Q, et al. Phase-stabilized 100 mW frequency comb near 10 μm [J]. Applied Physics B, 2018, 124(7): 128. doi:  10.1007/s00340-018-6996-8
[43] Adler F, Cossel K C, Thorpe M J, et al. Phase-stabilized, 15 W frequency comb at 2.8–4.8 μm [J]. Optics Letters, 2009, 34(9): 1330. doi:  10.1364/OL.34.001330
[44] Leindecker N, Marandi A, Byer R L, et al. Octave-spanning ultrafast OPO with 2.6-6.1 µm instantaneous bandwidth pumped by femtosecond Tm-fiber laser [J]. Optics Express, 2012, 20(7): 7046. doi:  10.1364/OE.20.007046
[45] Roiz M, Kumar K, Karhu J, et al. Simple method for mid-infrared optical frequency comb generation with dynamic offset frequency tuning [J]. APL Photonics, 2021, 6(2): 026103. doi:  10.1063/5.0038496
[46] Erny C, Moutzouris K, Biegert J, et al. Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8 μm from a compact fiber source [J]. Optics Letters, 2007, 32(9): 1138. doi:  10.1364/OL.32.001138
[47] Maidment L, Schunemann P G, Reid D T. Molecular fingerprint-region spectroscopy from 5 to 12 μm using an orientation-patterned gallium phosphide optical parametric oscillator [J]. Optics Letters, 2016, 41(18): 4261. doi:  10.1364/OL.41.004261
[48] Vainio M, Karhu J. Fully stabilized mid-infrared frequency comb for high-precision molecular spectroscopy [J]. Optics Express, 2017, 25(4): 4190. doi:  10.1364/OE.25.004190
[49] Gale B J S, Sun J H, Reid D T. Composite frequency comb spanning 0.4-2.4 μm from a femtosecond Ti: Sapphire laser and synchronously pumped optical parametric oscillator[C]//2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference, 2007.
[50] Alfano R R, Shapiro S L. Emission in the region 4000 to 7000 Å via four-photon coupling in glass [J]. Physical Review Letters, 1970, 24(11): 584.
[51] Lesko D M B, Timmers H, Xing S, et al. A six-octave optical frequency comb from a scalable few-cycle erbium fibre laser [J]. Nature Photonics, 2021, 15(4): 281-286. doi:  10.1038/s41566-021-00778-y
[52] Yuan J, Kang Z, Li F, et al. Mid-infrared octave-spanning supercontinuum and frequency comb generation in a suspended germanium-membrane ridge waveguide [J]. Journal of Lightwave Technology, IEEE, 2017, 35(14): 2994-3002. doi:  10.1109/JLT.2017.2703644
[53] Kowligy A S, Lind A, Hickstein D D, et al. Mid-infrared frequency comb generation via cascaded quadratic nonlinearities in quasi-phase-matched waveguides [J]. Optics Letters, 2018, 43(8): 1678. doi:  10.1364/OL.43.001678
[54] Guo H, Herkommer C, Billat A, et al. Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides [J]. Nature Photonics, 2018, 12(6): 330-335. doi:  10.1038/s41566-018-0144-1
[55] Faist J, Villares G, Scalari G, et al. Quantum cascade laser frequency combs [J]. Nanophotonics, 2016, 5(2): 272-291. doi:  10.1515/nanoph-2016-0015
[56] Tatham M C, Ryan J F, Foxon C T. Time-resolved Raman measurements of intersubband relaxation in GaAs quantum wells [J]. Physical Review Letters, 1989, 63(15): 1637-1640. doi:  10.1103/PhysRevLett.63.1637
[57] Wang C Y, Kuznetsova L, Gkortsas V M, et al. Mode-locked pulses from mid-infrared quantum cascade lasers [J]. Optics Express, 2009, 17(15): 12929. doi:  10.1364/OE.17.012929
[58] Hugi A, Villares G, Blaser S, et al. Mid-infrared frequency comb based on a quantum cascade laser [J]. Nature, 2012, 492(7428): 229-233. doi:  10.1038/nature11620
[59] Hillbrand J, Andrews A M, Detz H, et al. Coherent injection locking of quantum cascade laser frequency combs [J]. Nature Photonics, 2019, 13(2): 101-104. doi:  10.1038/s41566-018-0320-3
[60] Consolino L, Nafa M, Cappelli F, et al. Fully phase-stabilized quantum cascade laser frequency comb [J]. Nature Communications, 2019, 10(1): 2938. doi:  10.1038/s41467-019-10913-7
[61] Villares G, Faist J. Quantum cascade laser combs: effects of modulation and dispersion [J]. Optics Express, 2015, 23(2): 1651. doi:  10.1364/OE.23.001651
[62] Henry N, Burghoff D, Hu Q, et al. Temporal characteristics of quantum cascade laser frequency modulated combs in long wave infrared and THz regions [J]. Optics Express, 2018, 26(11): 14201. doi:  10.1364/OE.26.014201
[63] Opačak N, Schwarz B. Theory of frequency-modulated combs in lasers with spatial hole burning, dispersion, and Kerr nonlinearity [J]. Physical Review Letters, 2019, 123(24): 1-5.
[64] Piccardo M, Schwarz B, Kazakov D, et al. Frequency combs induced by phase turbulence [J]. Nature, 2020, 582(7812): 360-364. doi:  10.1038/s41586-020-2386-6
[65] Komagata K, Shehzad A, Hamrouni M, et al. All-mid-infrared stabilized quantum cascade laser frequency comb with 30-kHz frequency stability at 7.7 μm[C]//CLEO: Science and Innovations 2021: STu1H.3.
[66] Zhou H, Geng Y, Cui W, et al. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities [J]. Light: Science & Applications, 2019, 8(1): 50.
[67] Wang W, Chu S T, Little B E, et al. Dual-pump Kerr micro-cavity optical frequency comb with varying FSR spacing [J]. Scientific Reports, 2016, 6(1): 28501. doi:  10.1038/srep28501
[68] Lu Z, Chen H J, Wang W, et al. Synthesized soliton crystals [J]. Nature Communications, 2021, 12(1): 3179. doi:  10.1038/s41467-021-23172-2
[69] Del’haye P, Schliesser A, Arcizet O, et al. Optical frequency comb generation from a monolithic microresonator [J]. Nature, 2007, 450(7173): 1214-1217. doi:  10.1038/nature06401
[70] Herr T, Hartinger K, Riemensberger J, et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators [J]. Nature Photonics, 2012, 6(7): 480-487. doi:  10.1038/nphoton.2012.127
[71] Zhang X, Zhao Y. Research progress of microresonator-based optical frequency combs [J]. Acta Optica Sinica, 2021, 41(8): 0823014. (in Chinese) doi:  10.3788/AOS202141.0823014
[72] Yao B, Liu Y, Huang S, et al. Broadband gate-tunable terahertz plasmons in graphene heterostructures [J]. Nature Photon, 2018, 12: 22-28. doi:  https://doi.org/10.1038/s41566-017-0054-7
[73] Del’haye P, Herr T, Gavartin E, et al. Octave spanning tunable frequency comb from a microresonator [J]. Physical Review Letters, 2011, 107(6): 063901. doi:  10.1103/PhysRevLett.107.063901
[74] Chen H J, Ji Q X, Wang H, et al. Chaos-assisted two-octave-spanning microcombs [J]. Nature Communications, 2020, 11(1): 2336. doi:  10.1038/s41467-020-15914-5
[75] Yu M, Okawachi Y, Griffith A G, et al. Mode-locked mid-infrared frequency combs in a silicon microresonator [J]. Optica, 2016, 3(8): 854. doi:  10.1364/OPTICA.3.000854
[76] Xuan Y, Liu Y, Varghese L T, et al. High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation [J]. Optica, 2016, 3(11): 1171. doi:  10.1364/OPTICA.3.001171
[77] Luke K, Okawachi Y, Lamont M R E, et al. Broadband mid-infrared frequency comb generation in a Si(3)N(4) microresonator [J]. Optics Letters, 2015, 40(21): 4823. doi:  10.1364/OL.40.004823
[78] Guo Y, Wang J, Han Z, et al. Power-efficient generation of two-octave mid-IR frequency combs in a germanium microresonator [J]. Nanophotonics, 2018, 7(8): 1461-1467. doi:  10.1515/nanoph-2017-0131
[79] Jiang S, Guo C, Fu H, et al. Mid-infrared Raman lasers and Kerr-frequency combs from an all-silica narrow-linewidth microresonator/fiber laser system [J]. Optics Express, 2020, 28(25): 38304. doi:  10.1364/OE.412157
[80] Suh M G, Yang Q F, Yang K Y, et al. Microresonator soliton dual-comb spectroscopy [J]. Science, 2016, 354(6312): 600-603. doi:  10.1126/science.aah6516
[81] Su P, Han Z, Kita D, et al. Monolithic on-chip mid-IR methane gas sensor with waveguide-integrated detector [J]. Applied Physics Letters, 2019, 114(5): 051103. doi:  10.1063/1.5053599
[82] Bailey D M, Zhao G, Fleisher A J. Precision spectroscopy of nitrous oxide isotopocules with a cross-dispersed spectrometer and a mid-Infrared frequency comb [J]. Analytical Chemistry, 2020, 92(20): 13759-13766. doi:  10.1021/acs.analchem.0c01868
[83] Abbas M A, Pan Q, Mandon J, et al. Time-resolved mid-infrared dual-comb spectroscopy [J]. Scientific Reports, 2019, 9(1): 17247. doi:  https://doi.org/10.1038/s41598-019-53825-8
[84] Liang Q, Chan Y C, Changala P B, et al. Ultrasensitive multispecies spectroscopic breath analysis for real-time health monitoring and diagnostics [J]. Proceedings of the National Academy of Sciences, 2021, 118(40): e2105063118. doi:  10.1073/pnas.2105063118
[85] Lin H, Luo Z, Gu T, et al. Mid-infrared integrated photonics on silicon: a perspective [J]. Nanophotonics, 2017, 7(2): 393-420. doi:  10.1515/nanoph-2017-0085
[86] Sterczewski L A, Bagheri M, Frez C, et al. Mid-infrared dual-comb spectroscopy with room-temperature bi-functional interband cascade lasers and detectors [J]. Applied Physics Letters, 2020, 116(14): 141102. doi:  10.1063/1.5143954
[87] Yao B, Huang S W, Liu Y, et al. Gate-tunable frequency combs in graphene–nitride microresonators [J]. Nature, 2018, 558(7710): 410-414. doi:  10.1038/s41586-018-0216-x
[88] Tan T, Yuan Z, Zhang H, et al. Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator [J]. Nature Communications, 2021, 12(1): 6716. doi:  10.1038/s41467-021-26740-8
[89] Zhang L, Ding J, Zheng H, et al. Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics [J]. Nature Communications, 2018, 9(1): 1481. doi:  10.1038/s41467-018-03831-7
[90] Zhang X, Cao Q T, Wang Z, et al. Symmetry-breaking-induced nonlinear optics at a microcavity surface [J]. Nature Photonics, 2019, 13(1): 21-24. doi:  10.1038/s41566-018-0297-y
[91] Jiang X, Shao L, Zhang S X, et al. Chaos-assisted broadband momentum transformation in optical microresonators [J]. Science, 2017, 358(6361): 344-347. doi:  10.1126/science.aao0763
[92] Diddams S A, Vahala K, Udem T. Optical frequency combs: Coherently uniting the electromagnetic spectrum. [J]. Science, 2020, 369(6501): eaay3676. doi:  10.1126/science.aay3676
[93] Stern B, Ji X, Okawachi Y, et al. Battery-operated integrated frequency comb generator [J]. Nature, 2018, 562(7727): 401-405. doi:  10.1038/s41586-018-0598-9
[94] Shen B, Chang L, Liu J, et al. Integrated turnkey soliton microcombs [J]. Nature, 2020, 582(7812): 365-369. doi:  10.1038/s41586-020-2358-x
[95] Tan T, Peng C, Yuan Z, et al. Predicting Kerr soliton combs in microresonators via deep neural networks [J]. Journal of Lightwave Technology, 2020, 38(23): 6591-6599. doi:  10.1109/JLT.2020.3015586
[96] Xu X, Tan M, Corcoran B, et al. 11 TOPS photonic convolutional accelerator for optical neural networks [J]. Nature, 2021, 589(7840): 44-51. doi:  10.1038/s41586-020-03063-0
[97] Feldmann J, Youngblood N, Karpov M, et al. Parallel convolutional processing using an integrated photonic tensor core [J]. Nature, 2021, 589(7840): 52-58. doi:  10.1038/s41586-020-03070-1