[1] Keller B, Draelos M, Tang G, et al. Real-time corneal segmentation and 3D needle tracking in intrasurgical OCT [J]. Biomedical Optics Express, 2018, 9(6): 2716. doi:  10.1364/BOE.9.002716
[2] Wang Y, Feng L, Zhu L, et al. Measurement of ocular axial length using full-range spectral-domain low-coherence interferometry [J]. Chinese Optics Letters, 2018, 16(3): 1−5.
[3] Ireneusz G, Silvestre M, Lukasz C, et al. Swept source optical coherence tomography and tunable lens technology for comprehensive imaging and biometry of the whole eye [J]. Optica, 2018, 5(1): 52. doi:  10.1364/OPTICA.5.000052
[4] Lee W D, Devarajan K, Chua J, et al. Optical coherence tomography angiography for the anterior segment [J]. Eye and Vision, 2019, 6(4): 1−9.
[5] Wei Tongda, Zhang Yunhai, Yang Haomin. Super resolution imaging technology of stimulated emission depletion [J]. Infrared and Laser Engineering, 2016, 45(6): 0624001. (in Chinese)
[6] Zhang Jianying, Xie Wenming, Zeng Zhiping, et al. Recent progress in photoacoustic imaging technology [J]. Chinese Journal of Optics, 2011, 4(2): 111−117. (in Chinese)
[7] Muzyka-Woźniak M, Oleszko A. Comparison of anterior segment parameters and axial length measurements performed on a Scheimpflug device with biometry function and a reference optical biometer [J]. International Ophthalmology, 2018, 38: 1−8.
[8] Priluck A Z, Priluck J C, Holweger J. OCT of anterior capsular opacification in the visual axis [J]. Ophthalmology, 2018, 125(2): 254. doi:  10.1016/j.ophtha.2017.11.006
[9] He Weihong. Development of an optical coherence tomography imaging system in ophthalmology [J]. Optics and Precision Engineering, 2008, 16(3): 70−75. (in Chinese)
[10] Bradu A, Rivet S, Podoleanu A. Master/slave based optical coherence tomography for in-vivo, real-time, long axial imaging range of the anterior segment[C]//Spie Bios, 2017, 10045: 1004518.
[11] Wang X, li Z, Nan N, et al. A simple system of swept source optical coherence tomography for a large imaging depth range [J]. Optics Communications, 2019, 431: 51−57. doi:  10.1016/j.optcom.2018.08.080
[12] Maheshwari A, Choma M A, Izatt J A. Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal [J]. Journal of Biomedical Optics, 2005, 10(6): 1−6.
[13] Tao A, Shao Y, Zhong J, et al. Versatile optical coherence tomography for imaging the human eye [J]. Biomed Opt Express, 2013, 4(7): 1031−1044. doi:  10.1364/BOE.4.001031
[14] Fan S, Li L, Li Q, et al. Dual band dual focus optical coherence tomography for imaging the whole eye segment[J]. Biomedical Optics Express, 2015, 6(7): 2481. 2015, 6(7): 583–594.
[15] Dai Cuixia. Research on two-channel OCT imaging based on 3*3 fiber coupler[C]//Summary of the Academic Conference of the Chinese Society of Optics, 2011. (in Chinese)
[16] Chen R, Wang D, Ma L, et al. Comparison of master OCT and IOL master detection in patients with cataract axial length results [J]. Chinese Journal of Ophthalmologic Medicine, 2016, 6(5): 208−212.
[17] Mansik J, Jeehyun K, Unsang J, et al. Full-range k-domain linearization in spectral-domain optical coherence tomography [J]. Applied Optics, 2011, 50(8): 1158−1163. doi:  10.1364/AO.50.001158
[18] Dong Tingting, Zhang Guowei, Guo Jie, et al. Development of imaging system with bionic moth-eye anti-reflection structure [J]. Infrared and Laser Engineering, 2019, 48(1): 0118004. (in Chinese) doi:  10.3788/IRLA201948.0118004
[19] Potsaid B, Baumann B, Huang D, et al. Ultrahigh speed 1050 nm swept source / Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second [J]. Opt Express, 2010, 18(19): 20029−20048. doi:  10.1364/OE.18.020029
[20] Wu T, Sun S, Wang X, et al. Optimization of linear-wavenumber spectrometer for high-resolution spectral domain optical coherence tomography [J]. Optics Communications, 2017, 405: 171−176. doi:  10.1016/j.optcom.2017.08.016
[21] Jiefeng X, Li H, Jiasong L, et al. Generic real-time uniform K-space sampling method for high-speed swept-source optical coherence tomography [J]. Optics Express, 2010, 18(9): 9511−9517. doi:  10.1364/OE.18.009511
[22] Huber R, Wojtkowski M, Taira K, et al. Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles [J]. Optics Express, 2005, 13(9): 3513−3528. doi:  10.1364/OPEX.13.003513
[23] Liu Shanshan, Wang Yi, Zhang Weiqian, et al. Large-scale axial length measuring system based on SS-OCT [J]. Acta Photonica Sinica, 2019, 48(05): 0512002.
[24] Sun Yankui. Medical image processing techniques based on optical coherence tomography and their applications [J]. Optics and Precision Engineering, 2014, 22(4): 1086−1104. (in Chinese) doi:  10.3788/OPE.20142204.1086
[25] Douini Y, Riffi J, Mahraz A M, et al. An image registration algorithm based on phase correlation and the classical Lucas–Kanade technique [J]. Signal Image & Video Processing, 2017, 11(7): 1−8.
[26] Sun Hui, Li Zhiqiang, Sun Lina, et al. Sub-pixel registration of special and frequency domains for video sequences [J]. Chinese Journal of Optics, 2011, 4(2): 154−160.
[27] You Y L, Kaveh M. Fourth-order partial differential equations for noise removal [J]. IEEE Transactions on Image Processing, 2000, 9(10): 1723. doi:  10.1109/83.869184
[28] Ruggeri M, Uhlhorn S R, Freitas C D, et al. Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch [J]. Biomedical Optics Express, 2012, 3(7): 1506. doi:  10.1364/BOE.3.001506