[1] Fan S, He Y, Ung B S, et al. The growth of biomedical terahertz research [J]. Journal of Physics D: Applied Physics, 2014, 47(37): 374009. doi:  10.1088/0022-3727/47/37/374009
[2] Oh S J, Kim S-H, Jeong K, et al. Measurement depth enhancement in terahertz imaging of biological tissues [J]. Optics Express, 2013, 21(18): 21299-21305. doi:  10.1364/OE.21.021299
[3] Arbab M H, Winebrenner D P, Dickey T C, et al. Terahertz spectroscopy for the assessment of burn injuries in vivo [J]. Journal of Biomedical Optics, 2013, 18(7): 077004. doi:  10.1117/1.JBO.18.7.077004
[4] Clery D. Brainstorming their way to an imaging revolution [J]. Science, 2002, 297(5582): 761-763. doi:  10.1126/science.297.5582.761
[5] Rappaport T S, Xing Y C, Kanhere O, et al. Wireless communications and applications above 100 GHz: opportunities and challenges for 6G and beyond [J]. IEEE Access, 2019, 7: 78729-78757. doi:  10.1109/ACCESS.2019.2921522
[6] Basar E, Di Renzo M, De Rosny J, et al. Wireless communications through reconfigurable intelligent surfaces [J]. IEEE Access, 2019, 7: 116753-116773. doi:  10.1109/ACCESS.2019.2935192
[7] Basar E. Reconfigurable intelligent surface-based index modulation: a new beyond mimo paradigm for 6G [J]. IEEE Transactions on Communications, 2020, 68(5): 3187-3196. doi:  10.1109/TCOMM.2020.2971486
[8] Smith D R, Padilla W J, Vier D C, et al. Composite medium with simultaneously negative permeability and permittivity [J]. Physical Review Letters, 2000, 84(18): 4184-4187. doi:  10.1103/PhysRevLett.84.4184
[9] Valentine J, Zhang S, Zentgraf T, et al. Three-dimensional optical metamaterial with a negative refractive index [J]. Nature, 2008, 455(7211): 376-379. doi:  10.1038/nature07247
[10] Paul O, Reinhard B, Krolla B, et al. Gradient index metamaterial based on slot elements [J]. Applied Physics Letters, 2010, 96(24): 241110. doi:  10.1063/1.3453758
[11] Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction [J]. Science, 2011, 334(6054): 333-337. doi:  10.1126/science.1210713
[12] Kuznetsov S A, Astafev M A, Beruete M, et al. Planar holographic metasurfaces for terahertz focusing [J]. Scientific Reports, 2015, 5: 7738. doi:  10.1038/srep07738
[13] Zhao H, Wang X, He J, et al. High-efficiency terahertz devices based on cross-polarization converter [J]. Scientific Reports, 2017, 7(1): 17882. doi:  10.1038/s41598-017-18013-6
[14] Grady N K, Heyes J E, Chowdhury D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction [J]. Science, 2013, 340(6138): 1304-1307. doi:  10.1126/science.1235399
[15] Jia M, Wang Z, Li H, et al. Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces [J]. Light: Science & Applications, 2019, 8: 16.
[16] Hu D, Wang X, Feng S, et al. Ultrathin terahertz planar elements [J]. Advanced Optical Materials, 2013, 1(2): 186-191. doi:  10.1002/adom.201200044
[17] Yang Q, Gu J, Wang D, et al. Efficient flat metasurface lens for terahertz imaging [J]. Optics Express, 2014, 22(21): 25931-25939. doi:  10.1364/OE.22.025931
[18] Wang Q, Zhang X Q, Xu Y H, et al. A broadband metasurface-based terahertz flat-lens array [J]. Advanced Optical Materials, 2015, 3(6): 779-785. doi:  10.1002/adom.201400557
[19] He J, Dong T, Chi B, et al. Meta-hologram for three-dimensional display in terahertz waveband [J]. Microelectronic Engineering, 2020, 220: 111151. doi:  10.1016/j.mee.2019.111151
[20] He J, Wang X, Hu D, et al. Generation and evolution of the terahertz vortex beam [J]. Optics Express, 2013, 21(17): 20230-20239. doi:  10.1364/OE.21.020230
[21] He J, Wang S, Xie Z, et al. Abruptly autofocusing terahertz waves with meta-hologram [J]. Optics Letters, 2016, 41(12): 2787-2790. doi:  10.1364/OL.41.002787
[22] Guo J-Y, Wang X-K, He J-W, et al. Generation of radial polarized Lorentz beam with single layer metasurface [J]. Advanced Optical Materials, 2018, 6(1): 1700925. doi:  10.1002/adom.201700925
[23] Liang L, Qi M, Yang J, et al. Anomalous terahertz reflection and scattering by flexible and conformal coding metamaterials [J]. Advanced Optical Materials, 2015, 3(10): 1374-1380. doi:  10.1002/adom.201500206
[24] Gao L-H, Cheng Q, Yang J, et al. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces [J]. Light: Science & Applications, 2015, 4(9): e324-e324.
[25] Liu S, Cui T J, Zhang L, et al. Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams [J]. Advanced Science, 2016, 3(10): 1600156. doi:  10.1002/advs.201600156
[26] Wang B, Quan B, He J, et al. Wavelength de-multiplexing metasurface hologram [J]. Scientific Reports, 2016, 6: 35657. doi:  10.1038/srep35657
[27] Wang S, Wang X, Kan Q, et al. Spin-selected focusing and imaging based on metasurface lens [J]. Optics Express, 2015, 23(20): 26434-26441. doi:  10.1364/OE.23.026434
[28] Zhang H, Zhang X, Quan X, et al. High-efficiency dielectric metasurfaces for polarization-dependent terahertz wavefront manipulation [J]. Advanced Optical Materials, 2018, 6(1): 1700773. doi:  10.1002/adom.201700773
[29] Seo M, Kyoung J, Park H, et al. Active terahertz nanoantennas based on VO<sub>2</sub> phase transition [J]. Nano Letters, 2010, 10(6): 2064-2068. doi:  10.1021/nl1002153
[30] Liu M, Hwang H Y, Tao H, et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial [J]. Nature, 2012, 487(7407): 345-348. doi:  10.1038/nature11231
[31] Fang Z, Thongrattanasiri S, Schlather A, et al. Gated tunability and hybridization of localized plasmons in nanostructured graphene [J]. ACS Nano, 2013, 7(3): 2388-2395. doi:  10.1021/nn3055835
[32] Ju L, Geng B, Horng J, et al. Graphene plasmonics for tunable terahertz metamaterials [J]. Nature Nanotechnology, 2011, 6(10): 630-634. doi:  10.1038/nnano.2011.146
[33] Wei B, Hu W, Ming Y, et al. Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals [J]. Advanced Materials, 2014, 26(10): 1590-1595. doi:  10.1002/adma.201305198
[34] Kanda N, Konishi K, Kuwata-Gonokami M. All-photoinduced terahertz optical activity [J]. Optics Letters, 2014, 39(11): 3274-3277. doi:  10.1364/OL.39.003274
[35] Lv T T, Zhu Z, Shi J H, et al. Optically controlled background-free terahertz switching in chiral metamaterial [J]. Optics Letters, 2014, 39(10): 3066-3069. doi:  10.1364/OL.39.003066
[36] Shen N H, Massaouti M, Gokkavas M, et al. Optically implemented broadband blueshift switch in the terahertz regime [J]. Physical Review Letters, 2011, 106(3): 037403. doi:  10.1103/PhysRevLett.106.037403
[37] Chen H T, Padilla W J, Zide J M O, et al. Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices [J]. Optics Letters, 2007, 32(12): 1620-1622. doi:  10.1364/OL.32.001620
[38] He J, Xie Z, Sun W, et al. Terahertz tunable metasurface lens based on vanadium dioxide phase transition [J]. Plasmonics, 2016, 11(5): 1285-1290. doi:  10.1007/s11468-015-0173-2
[39] Wang T, He J, Guo J, et al. Thermally switchable terahertz wavefront metasurface modulators based on the insulator-to-metal transition of vanadium dioxide [J]. Optics Express, 2019, 27(15): 20347-20357. doi:  10.1364/OE.27.020347
[40] Liu X, Wang Q, Zhang X, et al. Thermally dependent dynamic meta-holography using a vanadium dioxide integrated metasurface [J]. Advanced Optical Materials, 2019, 7(12): 1900175. doi:  10.1002/adom.201900175
[41] Georgiou G, Tserkezis C, Schaafsma M C, et al. Active loaded plasmonic antennas at terahertz frequencies: optical control of their capacitive-inductive coupling [J]. Physical Review B, 2015, 91(12): 125443. doi:  10.1103/PhysRevB.91.125443
[42] Large N, Abb M, Aizpurua J, et al. Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches [J]. Nano Letters, 2010, 10(5): 1741-1746. doi:  10.1021/nl1001636
[43] Georgiou G, Tyagi H K, Mulder P, et al. Photo-generated Thz antennas [J]. Scientific Reports, 2014, 4(1): 3584.
[44] Steinbusch T P, Tyagi H K, Schaafsma M C, et al. Active terahertz beam steering by photo-generated graded index gratings in thin semiconductor films [J]. Optics Express, 2014, 22(22): 26559-26571. doi:  10.1364/OE.22.026559
[45] Okada T, Ooi K, Nakata Y, et al. Direct creation of a photoinduced metallic structure and its optical properties in the terahertz frequency region [J]. Optics Letters, 2010, 35(10): 1719-1721. doi:  10.1364/OL.35.001719
[46] Kanda N, Konishi K, Kuwata-Gonokami M. Dynamics of photo-induced terahertz optical activity in metal chiral gratings [J]. Optics Letters, 2012, 37(17): 3510-3512. doi:  10.1364/OL.37.003510
[47] Chatzakis I, Tassin P, Luo L, et al. One- and two-dimensional photo-imprinted diffraction Gratings for Manipulating terahertz waves [J]. Applied Physics Letters, 2013, 103(4): 043101. doi:  10.1063/1.4813620
[48] Okada T, Tanaka K. Photo-designed terahertz devices [J]. Scientific Reports, 2011, 1(10): 121.
[49] Kamaraju N, Rubano A, Jian L, et al. Subcycle control of terahertz waveform polarization using all-optically induced transient metamaterials [J]. Light: Science & Applications, 2014, 3(2): e155.
[50] He J W, Wang X K, Xie Z W, et al. Reconfigurable terahertz grating with enhanced transmission of TE polarized light [J]. APL Photonics, 2017, 2(7): 076102. doi:  10.1063/1.4986505
[51] Wang X, Xie Z, Sun W, et al. Focusing and imaging of a virtual all-optical tunable terahertz Fresnel zone plate [J]. Optics Letters, 2013, 38(22): 4731-4734. doi:  10.1364/OL.38.004731
[52] Xie Z, He J, Wang X, et al. Generation of terahertz vector beams with a concentric ring metal grating and photo-generated carriers [J]. Optics Letters, 2015, 40(3): 359-362. doi:  10.1364/OL.40.000359
[53] Guo J, Wang T, Zhao H, et al. Reconfigurable terahertz metasurface pure phase holograms [J]. Advanced Optical Materials, 2019, 7(10): 1801696. doi:  10.1002/adom.201801696