[1] Lakadamyali M. High resolution imaging of neuronal connec-tivity [J]. Journal of Microscopy, 2012, 248(2): 111-116. doi:  10.1111/j.1365-2818.2012.03638.x
[2] Xu K, Babcock H P, Zhuang X W. Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton [J]. Nature Methods, 2012, 9(2): 185-188. doi:  10.1038/nmeth.1841
[3] Jungmann R, Avendano M S, Woehrstein J B, et al. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and exchange-PAINT [J]. Nature Methods, 2014, 11(3): 313-318. doi:  10.1038/nmeth.2835
[4] Lin J R, Fallahi-Sichani M, Sorger P K. Highly multiplexed imaging of single cells using a high-throughput cyclic immunofluorescence method [J]. Nature Communications, 2015, 6: 8390. doi:  10.1038/ncomms9390
[5] Peng X H, Huang X S, Du K, et al. High spatiotemporal resolution and low photo-toxicity fluorescence imaging in live cells and in vivo [J]. Biochemical Society Transactions, 2019, 47(6): 1635-1650. doi:  10.1042/bst20190020
[6] Kandel M E, He Y C R, Lee Y J, et al. Phase imaging with computational specificity (PICS) for measuring dry mass changes in sub-cellular compartments [J]. Nature Commu-nications, 2020, 11(1): 6256. doi:  10.1038/s41467-020-20062-x
[7] Ghukasyan V V, Kao F J. Monitoring cellular metabolism with fluorescence lifetime of reduced nicotinamide adenine dinucleotide [J]. Journal of Physical Chemistry C, 2009, 113(27): 11532-11540. doi:  10.1021/jp810931u
[8] Ouzounov D G, Wang T Y, Wang M R, et al. In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain [J]. Nature Methods, 2017, 14(4): 388-390. doi:  10.1038/nmeth.4183
[9] Zhang X D, Wang H X, Wang H, et al. Single-layered graphitic-C3 N4 quantum dots for two-photon fluorescence imaging of cellular nucleus [J]. Advanced Materials, 2014, 26(26): 4438-4443. doi:  10.1002/adma.201400111
[10] von Diezmann A, Shechtman Y, Moerner W E. Three-dimensional localization of single molecules for super resolution imaging and single-particle tracking [J]. Chemical Reviews, 2017, 117(11): 7244-7275. doi:  10.1021/acs.chemrev.6b00629
[11] Hedde P N, Ranjit S, Gratton E. 3D fluorescence anisotropy imaging using selective plane illumination microscopy [J]. Optics Express, 2015, 23(17): 22308-22317. doi:  10.1364/oe.23.022308
[12] Wu Y, Wu X D, Lu R, et al. Resonant scanning with large field of view reduces photobleaching and enhances fluorescence yield in STED microscopy [J]. Scientific Reports, 2015, 5: 14766. doi:  10.1038/srep14766
[13] Palero J, Santos S, Artigas D, et al. A simple scanless two-photon fluorescence microscope using selective plane illumination [J]. Optics Express, 2010, 18(8): 8491-8498. doi:  10.1364/oe.18.008491
[14] Zhang Z K, Cong L, Bai L, et al. Light-field microscopy for fast volumetric brain imaging [J]. Journal of Neuroscience Methods, 2021, 352: 109083. doi:  10.1016/j.jneumeth.2021.109083
[15] Zhu L, Zhang W, Elnatan D, et al. Faster STORM using compressed sensing [J]. Nature Methods, 2012, 9(7): 721-723. doi:  10.1038/nmeth.1978
[16] Soini J T, Schrader M, Hanninen P E, et al. Image formation and data acquisition in a stage scanning 4Pi confocal fluorescence microscope [J]. Applied Optics, 1997, 36(34): 8929-8934. doi:  10.1364/ao.36.008929
[17] van Munster E B, Goedhart J, Kremers G J, et al. Combination of a spinning disc confocal unit with frequency-domain fluorescence lifetime imaging microscopy [J]. Cytometry Part A, 2007, 71A(4): 207-214. doi:  10.1002/cyto.a.20379
[18] Conchello J A, Lichtman J W. Optical sectioning microscopy [J]. Nature Methods, 2005, 2(12): 920-931. doi:  10.1038/nmeth815
[19] Qi X L, Yang T, Li L H, et al. Fluorescence micro-optical sectioning tomography using acousto-optical deflector-based confocal scheme [J]. Neurophotonics, 2015, 2(4): 041406. doi:  10.1117/1.NPh.2.4.041406
[20] Zong W J, Wu R L, Chen S Y, et al. Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging [J]. Nature Methods, 2021, 18(1): 46-49. doi:  10.1038/s41592-020-01024-z
[21] Ruprecht A K, Wiesendanger T F, Tiziani H J. Chromatic confocal microscopy with a finite pinhole size [J]. Optics Letters, 2004, 29(18): 2130-2132. doi:  10.1364/ol.29.002130
[22] Ishii H, Otomo K, Takahashi T, et al. Focusing new light on brain functions: multiphoton microscopy for deep and super-resolution imaging [J]. Neuroscience Research, 2022, 179: 24-30. doi:  10.1016/j.neures.2021.11.011
[23] Arbabi E, Li J Q, Hutchins R J, et al. Two-photon microscopy with a double-wavelength metasurface objectivel ens [J]. Nano Letters, 2018, 18(8): 4943-4948. doi:  10.1021/acs.nanolett.8b01737
[24] Zhu S J, Yang Q L, Antaris A L, et al. Molecular imaging of biological systems with a clickable dye in the broad 800-to 1, 700-nm near-infrared window [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(5): 962-967. doi:  10.1073/pnas.1617990114
[25] Yang W J, Carrillo-Reid L, Bando Y, et al. Simultaneous two-photon imaging and two-photon optogenetics of cortical circuits in three dimensions [J]. Elife, 2018, 7: e32671. doi:  10.7554/eLife.32671
[26] Scully A D, Ostler R B, MacRobert A J, et al. Laser line-scanning confocal fluorescence imaging of the photodynamic action of aluminum and zinc phthalocyanines in V79-4 Chinese hamster fibroblasts [J]. Photochemistry and Photobiology, 1998, 68(2): 199-204. doi:  10.1111/j.1751-1097.1998.tb02489.x
[27] Piyawattanametha W, Barretto R P J, Ko T H, et al. Fast-scanning two-photon fluorescence imaging based on a microelectromechanical systems two-dimensional scanning mirror [J]. Optics Letters, 2006, 31(13): 2018-2020. doi:  10.1364/ol.31.002018
[28] Boutilier R M, Park J S, Lee H. High-speed two-photon laser scanning microscopy imaging of in vivo blood cells in rapid circulation at velocities of up to 1.2 millimeters per second [J]. Current Optics and Photonics, 2018, 2(6): 595-605. doi:  10.3807/copp.2018.2.6.595
[29] Zhang T, Hernandez O, Chrapkiewicz R, et al. Kilohertz two-photon brain imaging in awake mice [J]. Nature Methods, 2019, 16(11): 1119-1122. doi:  10.1038/s41592-019-0597-2
[30] Woods E, Courtney J, Scholz D, et al. Tracking protein dynamics with photoconvertible Dendra2 on spinning disk confocal systems [J]. Journal of Microscopy, 2014, 256(3): 197-207. doi:  10.1111/jmi.12172
[31] Oketani R, Suda H, Uegaki K, et al. Visible-wavelength two-photon excitation microscopy with multifocus scanning for volumetric live-cell imaging [J]. Journal of Biomedical Optics, 2020, 25(1): 014502. doi:  10.1117/1.Jbo.25.1.014502
[32] Chien Y F, Lin J Y, Yeh P T, et al. Dual GRIN lens two-photon endoscopy for high-speed volumetric and deep brain imaging [J]. Biomedical Optics Express, 2021, 12(1): 162-172. doi:  10.1364/boe.405738
[33] York A G, Parekh S H, Nogare D D, et al. Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy [J]. Nature Methods, 2012, 9(7): 749-754. doi:  10.1038/nmeth.2025
[34] Chen Z Y, Mc Larney B, Rebling J, et al. High-speed large-field multifocal illumination fluorescence microscopy [J]. Laser & Photonics Reviews, 2020, 14(2): 1900070. doi:  10.1002/lpor.201900070
[35] Wu J L, Liang Y J, Chen S, et al. Kilohertz two-photon fluorescence microscopy imaging of neural activity in vivo [J]. Nature Methods, 2020, 17(3): 287-290. doi:  10.1038/s41592-020-0762-7
[36] Duocastella M, Sun B, Arnold C B. Simultaneous imaging of multiple focal planes for three-dimensional microscopy using ultra-high-speed adaptive optics [J]. Journal of Biomedical Optics, 2012, 17(5): 050505. doi:  10.1117/1.Jbo.17.5.050505
[37] Weisenburger S, Tejera F, Demas J, et al. Volumetric Ca2+ imaging in the mouse brain using hybrid multiplexed sculpted light microscopy [J]. Cell, 2019, 177(4): 1050-1066. doi:  10.1016/j.cell.2019.03.011
[38] Lu R W, Liang Y J, Meng G H, et al. Rapid mesoscale volumetric imaging of neural activity with synaptic resolution [J]. Nature Methods, 2020, 17(3): 291-294. doi:  10.1038/s41592-020-0760-9
[39] Hao X, Li Y M, Fu S, et al. Review of 4Pi fluorescence nanoscopy [J]. Engineering, 2022, 11: 146-153. doi:  10.1016/j.eng.2020.07.028
[40] Tortarolo G, Sun Y S, Teng K W, et al. Photon-separation to enhance the spatial resolution of pulsed STED microscopy [J]. Nanoscale, 2019, 11(4): 1754-1761. doi:  10.1039/c8nr07485b
[41] Velasco M G M, Zhang M Y, Antonello J, et al. 3D super-resolution deep-tissue imaging in living mice [J]. Optica, 2021, 8(4): 442-450. doi:  10.1364/optica.416841
[42] Li B, Wu C Y, Wang M R, et al. An adaptive excitation source for high-speed multiphoton microscopy [J]. Nature Methods, 2020, 17(2): 163-166. doi:  10.1038/s41592-019-0663-9
[43] Hillman E M C, Voleti V, Li W Z, et al. Light-sheet microscopy in neuroscience[M]//Annual Review of Neuro-science, 2019.
[44] Gibbs H C, Mota S M, Hart N A, et al. Navigating the light-sheet image analysis software landscape: concepts for driving cohesion from data acquisition to analysis [J]. Frontiers in Cell and Developmental Biology, 2021, 9: 739079. doi:  10.3389/fcell.2021.739079
[45] Poola P K, Afzal M I, Yoo Y, et al. Light sheet microscopy for histopathology applications [J]. Biomedical Engineering Letters, 2019, 9(3): 279-291. doi:  10.1007/s13534-019-00122-y
[46] Gu P C, Huang Z X, Ping M, et al. Thinner and longer working distance light sheet illumination and microscopic imaging [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27(4): 7300107. doi:  10.1109/jstqe.2020.2996606
[47] Liu T L, Upadhyayula S, Milkie D E, et al. Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms [J]. Science, 2018, 360(6386): 284-284. doi:  10.1126/science.aaq1392
[48] Fei P, Nie J, Lee J, et al. Subvoxel light-sheet microscopy for high-resolution high-throughput volumetric imaging of large biomedical specimens [J]. Advanced Photonics, 2019, 1(1): 016002. doi:  10.1117/1.AP.1.1.016002
[49] Fahrbach F O, Voigt F F, Schmid B, et al. Rapid 3D light-sheet microscopy with a tunable lens [J]. Optics Express, 2013, 21(18): 21010-21026. doi:  10.1364/oe.21.021010
[50] Haslehurst P, Yang Z Y, Dholakia K, et al. Fast volume-scanning light sheet microscopy reveals transient neuronal events [J]. Biomedical Optics Express, 2018, 9(5): 2154-2167. doi:  10.1364/boe.9.002154
[51] Lin P Y, Hwang S P L, Lee C H, et al. Two-photon scanned light sheet fluorescence microscopy with axicon imaging for fast volumetric imaging [J]. Journal of Biomedical Optics, 2021, 26(11): 116503. doi:  10.1117/1.Jbo.26.11.116503
[52] Olarte O E, Andilla J, Artigas D, et al. Decoupled illumination detection in light sheet microscopy for fast volumetric imaging [J]. Optica, 2015, 2(8): 702-705. doi:  10.1364/optica.2.000702
[53] Yang B, Chen X Y, Wang Y N, et al. Epi-illumination SPIM for volumetric imaging with high spatial-temporal resolution [J]. Nature Methods, 2019, 16(6): 501-504. doi:  10.1038/s41592-019-0401-3
[54] Yang B, Lange M, Millett-Sikking A, et al. DaXi-high-resolution, large imaging volume and multi-view single-objective light-sheet microscopy [J]. Nature Methods, 2022, 19(4): 461-469. doi:  10.1038/s41592-022-01417-2
[55] Cai Y H, Chen Y Z, Xia Y Q, et al. Single-lens light-sheet fluorescence microscopy based on micro-mirror array [J]. Laser & Photonics Reviews, 2022, 16(8): 2100026. doi:  10.1002/lpor.202100026
[56] Wang D P, Zhu Z J, Xu Z Y, et al. Neuroimaging with light field microscopy: a mini review of imaging systems [J]. European Physical Journal-Special Topics, 2022, 231(4): 749-761. doi:  10.1140/epjs/s11734-021-00367-8
[57] Broxton M, Grosenick L, Yang S, et al. Wave optics theory and 3-D deconvolution for the light field microscope [J]. Optics Express, 2013, 21(21): 25418-25439. doi:  10.1364/oe.21.025418
[58] Wang D P, Roy S, Rudzite A M, et al. High-resolution light-field microscopy with patterned illumination [J]. Biomedical Optics Express, 2021, 12(7): 3887-3901. doi:  10.1364/boe.425742
[59] Prevedel R, Yoon Y G, Hoffmann M, et al. Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy [J]. Nature Methods, 2014, 11(7): 727-730. doi:  10.1038/nmeth.2964
[60] Wagner N, Norlin N, Gierten J, et al. Instantaneous isotropic volumetric imaging of fast biological processes [J]. Nature Methods, 2019, 16(6): 497-500. doi:  10.1038/s41592-019-0393-z
[61] Wu J M, Lu Z, Jian D, et al. Iterative tomography with digital adaptive optics permits hour-long intravital observation of 3D subcellular dynamics at millisecond scale [J]. Cell, 2021, 184(12): 3318-3332.e17. doi:  10.1016/j.cell.2021.04.029
[62] Pan Z, Lu M, Xia S. Diffraction-assisted light field microscopy for microtomography and digital volume correlation with improved spatial resolution [J]. Experimental Mechanics, 2019, 59(5): 713-724. doi:  10.1007/s11340-019-00522-2
[63] He K, Wang X L, Wang Z H W, et al. Snapshot multifocal light field microscopy [J]. Optics Express, 2020, 28(8): 12108-12120. doi:  10.1364/oe.390719
[64] Geng Q, Fu Z Q, Chen S C. High-resolution 3D light-field imaging [J]. Journal of Biomedical Optics, 2020, 25(10): 106502. doi:  10.1117/1.Jbo.25.10.106502
[65] Wang Z Q, Zhu L X, Zhang H, et al. Real-time volumetric reconstruction of biological dynamics with light-field microscopy and deep learning [J]. Nature Methods, 2021, 18(5): 551-556. doi:  10.1038/s41592-021-01058-x
[66] Liu J D, Xu T F, Yue W R, et al. Light-field moment microscopy with noise reduction [J]. Optics Express, 2015, 23(22): 29154-29162. doi:  10.1364/oe.23.029154
[67] Wang H C, Chen N, Zheng S S, et al. Fast and high-resolution light field acquisition using defocus modulation [J]. Applied Optics, 2018, 57(1): A250-A256. doi:  10.1364/ao.57.00a250
[68] Truong T V, Holland D B, Madaan S, et al. High-contrast, synchronous volumetric imaging with selective volume illumination microscopy [J]. Communications Biology, 2020, 3(1): 74. doi:  10.1038/s42003-020-0787-6
[69] Wang D P, Xu S, Pant P, et al. Hybrid light-sheet and light-field microscope for high resolution and large volume neuroimaging [J]. Biomedical Optics Express, 2019, 10(12): 6595-6610. doi:  10.1364/boe.10.006595
[70] Zhang Z K, Bai L, Cong L, et al. Imaging volumetric dynamics at high speed in mouse and zebrafish brain with confocal light field microscopy [J]. Nature Biotechnology, 2021, 39(1): 74-83. doi:  10.1038/s41587-020-0628-7
[71] Schneckenburger H, Richter V. Laser scanning versus wide-field-choosing the appropriate microscope in life sciences [J]. Applied Sciences-Basel, 2021, 11(2): 733. doi:  10.3390/app11020733
[72] Luo J T, Li C K, Liu Q L, et al. Super-resolution structured illumination microscopy reconstruction using a least-squares solver [J]. Frontiers in Physics, 2020, 8: 118. doi:  10.3389/fphy.2020.00118
[73] Leung B O, Chou K C. Review of super-resolution fluorescence microscopy for biology [J]. Applied Spectroscopy, 2011, 65(9): 967-980. doi:  10.1366/11-06398
[74] Kurdzialek S, Demkowicz-Dobrzanski R. Super-resolution optical fluctuation imaging-fundamental estimation theory perspective [J]. Journal of Optics, 2021, 23(7): 075701. doi:  10.1088/2040-8986/ac059c
[75] Prakash K, Diederich B, Reichelt S, et al. Super-resolution structured illumination microscopy: past, present and future [J]. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 2021, 379(2199): 20200143. doi:  10.1098/rsta.2020.0143
[76] Gustafsson M G L, Shao L, Carlton P M, et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination [J]. Biophysical Journal, 2008, 94(12): 4957-4970. doi:  10.1529/biophysj.107.120345
[77] Fiolka R, Beck M, Stemmer A. Structured illumination in total internal reflection fluorescence microscopy using a spatial light modulator [J]. Optics Letters, 2008, 33(14): 1629-1631. doi:  10.1364/ol.33.001629
[78] Schwertner M, Booth M J, Wilson T. Specimen-induced distortions in light microscopy [J]. Journal of Microscopy, 2007, 228(1): 97-102. doi:  10.1111/j.1365-2818.2007.01827.x
[79] Lin R Z, Kipreos E T, Zhu J, et al. Subcellular three-dimensional imaging deep through multicellular thick samples by structured illumination microscopy and adaptive optics [J]. Nature Communications, 2021, 12(1): 3148. doi:  10.1038/s41467-021-23449-6
[80] Jones S A, Shim S H, He J, et al. Fast, three-dimensional super-resolution imaging of live cells [J]. Nature Methods, 2011, 8(6): 499-505. doi:  10.1038/nmeth.1605
[81] Stein S C, Huss A, Hahnel D, et al. Fourier interpolation stochastic optical fluctuation imaging [J]. Optics Express, 2015, 23(12): 16154-16163. doi:  10.1364/oe.23.016154
[82] Samanta S, Gong W J, Li W, et al. Organic fluorescent probes for stochastic optical reconstruction microscopy (STORM): Recent highlights [J]. Coordination Chemistry Reviews, 2019, 380: 17-34. doi:  10.1016/j.ccr.2018.08.006
[83] Lelek M, Gyparaki M, Melina T, et al. Single-molecule localization microscopy [J]. Nature Reviews Methods Primers, 2021, 1: 39. doi:  10.1038/s43586-021-00038-x
[84] Huang B, Wang W Q, Bates M, et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy [J]. Science, 2008, 319(5864): 810-813. doi:  10.1126/science.1153529
[85] Wang Y H, Jia S, Zhang H F, et al. Blind sparse inpainting reveals cytoskeletal filaments with sub-Nyquist localization [J]. Optica, 2017, 4(10): 1277-1284. doi:  10.1364/optica.4.001277
[86] Zeng Z P, Chen X Z, Wang H N, et al. Fast super-resolution imaging with ultra-high labeling density achieved by joint tagging super-resolution optical fluctuation imaging [J]. Scientific Reports, 2015, 5: 8359. doi:  10.1038/srep08359
[87] GruSsmayer K S, Geissbuehler S, Descloux A, et al. Spectral cross-cumulants for multicolor super-resolved SOFI imaging [J]. Nature Communications, 2020, 11(1): 3023. doi:  10.1038/s41467-020-16841-1
[88] Chen X Z, Zeng Z P, Li R Q, et al. Superior performance with sCMOS over EMCCD in super-resolution optical fluctuation imaging [J]. Journal of Biomedical Optics, 2016, 21(6): 066007. doi:  10.1117/1.Jbo.21.6.066007
[89] Sharpe J. Optical projection tomography [J]. Annual Review of Biomedical Engineering, 2004, 6: 209-228. doi:  10.1146/annurev.bioeng.6.040803.140210
[90] Birk U J, Rieckher M, Konstantinides N, et al. Correction for specimen movement and rotation errors for in-vivo optical projection tomography [J]. Biomedical Optics Express, 2010, 1(1): 87-96. doi:  10.1364/boe.1.000087
[91] Vinegoni C, Fexon L, Feruglio P F, et al. High throughput transmission optical projection tomography using low cost graphics processing unit [J]. Optics Express, 2009, 17(25): 22320-22332. doi:  10.1364/oe.17.022320
[92] Bassi A, Fieramonti L, D'Andrea C, et al. In vivo label-free three-dimensional imaging of zebrafish vasculature with optical projection tomography [J]. Journal of Biomedical Optics, 2011, 16(10): 100502. doi:  10.1117/1.3640808
[93] Arranz A, Dong D, Zhu S P, et al. In-vivo optical tomography of small scattering specimens: time-lapse 3D imaging of the head eversion process in Drosophila melanogaster [J]. Scientific Reports, 2014, 4: 7325. doi:  10.1038/srep07325
[94] McGinty J, Taylor H B, Chen L, et al. In vivo fluorescence lifetime optical projection tomography [J]. Biomedical Optics Express, 2011, 2(5): 1340-1350. doi:  10.1364/boe.2.001340
[95] Juntunen C, Woller I M, Sung Y J. Hyperspectral three-dimensional fluorescence imaging using snapshot Optical Tomography [J]. Sensors, 2021, 21(11): 3652. doi:  10.3390/s21113652
[96] Sharpe J, Ahlgren U, Perry P, et al. Optical projection tomography as a tool for 3D microscopy and gene expression studies [J]. Science, 2002, 296(5567): 541-545. doi:  10.1126/science.1068206
[97] Zhu S P, Dong D, Birk U J, et al. Automated motion correction for in vivo optical projection tomography [J]. IEEE Transactions on Medical Imaging, 2012, 31(7): 1358-1371. doi:  10.1109/tmi.2012.2188836
[98] Cheddad A, Svensson C, Sharpe J, et al. Image processing assisted algorithms for optical projection tomography [J]. IEEE Transactions on Medical Imaging, 2012, 31(1): 1-15. doi:  10.1109/tmi.2011.2161590
[99] Chen L L, McGinty J, Taylor H B, et al. Incorporation of an experimentally determined MTF for spatial frequency filtering and deconvolution during optical projection tomography reconstruction [J]. Optics Express, 2012, 20(7): 7323-7337. doi:  10.1364/oe.20.007323
[100] Gong C C, Zeng L, Wang C X. Image reconstruction model for limited-angle CT based on prior image induced relative total variation [J]. Applied Mathematical Modelling, 2019, 74: 586-605. doi:  10.1016/j.apm.2019.05.020
[101] Gong C C, Zeng L. Anisotropic structure property based image reconstruction method for limited-angle computed tomography [J]. Journal of X-Ray Science and Technology, 2021, 29(6): 1079-1102. doi:  10.3233/xst-210954
[102] Chen Z Q, Jin X, Li L, et al. A limited-angle CT reconstruction method based on anisotropic TV minimization [J]. Physics in Medicine and Biology, 2013, 58(7): 2119-2141. doi:  10.1088/0031-9155/58/7/2119
[103] Wang N, Chen D F, Chen D, et al. Feasibility study of limited-angle reconstruction for in vivo optical projection tomography based on novel sample fixation [J]. IEEE Access, 2019, 7: 87681-87691. doi:  10.1109/access.2019.2925096
[104] Chen X L, Zhu S P, Wang H Y, et al. Accelerated stimulated Raman projection tomography by sparse reconstruction from sparse-view data [J]. IEEE Transactions on Biomedical Engineering, 2020, 67(5): 1293-1302. doi:  10.1109/tbme.2019.2935301
[105] Wang H Y, Wang N, Xie H, et al. Two-stage deep learning network-based few-view image reconstruction for parallel-beam projection tomography [J]. Quantitative Imaging in Medicine and Surgery, 2022, 12(4): 2535-2551. doi:  10.21037/qims-21-778
[106] Zhong Q Y, Li A A, Jin R, et al. High-definition imaging using line-illumination modulation microscopy [J]. Nature Methods, 2021, 18(3): 309-315. doi:  10.1038/s41592-021-01074-x
[107] Zhu S J, Herraiz S, Yue J Y, et al. 3D NIR-II molecular imaging distinguishes targeted organs with high-performance NIR-II bioconjugates [J]. Advanced Materials, 2018, 30(13): 1705799. doi:  10.1002/adma.201705799
[108] Rodriguez C, Chen A, Rivera J A, et al. An adaptive optics module for deep tissue multiphoton imaging in vivo [J]. Nature Methods, 2021, 18(10): 1259-1264. doi:  10.1038/s41592-021-01279-0
[109] Fan J T, Suo J L, Wu J M, et al. Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution [J]. Nature Photonics, 2019, 13(11): 809-816. doi:  10.1038/s41566-019-0474-7
[110] Ozeki Y, Umemura W, Otsuka Y, et al. High-speed molecular spectral imaging of tissue with stimulated Raman scattering [J]. Nature Photonics, 2012, 6(12): 844-850. doi:  10.1038/nphoton.2012.263
[111] Chen X L, Zhang C, Lin P, et al. Volumetric chemical imaging by stimulated Raman projection microscopy and tomography [J]. Nature Communications, 2017, 8: 15117. doi:  10.1038/ncomms15117