[1] Dong Fengzhong, Kan Ruifeng, Liu Wenqing, et al. Tunable diode laser absorption spectroscopic technology and its application in air quality monitoring [J]. Chinese Journal of Quantum Electronics, 2005, 22(3): 315-325. (in Chinese) doi:  10.3969/j.issn.1007-5461.2005.03.002
[2] Liu W Q, Chen Z Y, Liu J G, et al. Advances with respect to the environmental spectroscopy monitoring technology [J]. Acta Optica Sinica, 2020, 40(5): 0500001. (in Chinese) doi:  10.3788/AOS202040.0500001
[3] Zhong Li, Song Di, Jiao Yue, et al. TDLAS detection of propylene with complex spectral features [J]. Chinese Optics, 2020, 13(5): 1044-1054. (in Chinese) doi:  10.37188/CO.2019-0203
[4] Sun P S, Zhang Z R, Li Z, et al. A study of two dimensional tomography reconstruction of temperature and gas concentration in a combustion field using TDLAS [J]. Applied Sciences, 2017, 7(10): 990. doi:  10.3390/app7100990
[5] Zhao Xiaohu, Sun Pengshuai, Yang Juan, et al. Online monitoring system of index cases concentration applied to coal sponta-neous combustion [J]. Journal of China Coal Society, 2021, 46(S1): 319-327. (in Chinese)
[6] Zhang Zhirong, Sun Pengshuai, Pang Tao, et al. Application of laser absorption spectroscopy for identification gases in industrial production processes and early safety warning [J]. Optics and Precision Engineering, 2018, 26(8): 1925-1937. (in Chinese) doi:  10.3788/OPE.20182608.1925
[7] Li Z, Zhang Z R, Sun P S, et al. Multi-point full range monitoring of methane based on TDLAS technology [J]. Infrared and Laser Engineering, 2017, 46(9): 0917009. (in Chinese) doi:  10.3788/IRLA201746.0917009
[8] Zheng C T, Huang J Q, Ye W L, et al. Demonstration of a portable near-infrared CH4 detection sensor based on tunable diode laser absorption spectroscopy [J]. Infrared Physics & Technology, 2013, 61: 306-312. doi:  https://doi.org/10.1016/j.infrared.2013.08.006
[9] Huang Jianqiang, Zhai Bing, Ye Weilin, et al. Near-infrared CH4 detection device using wavelength-modulation technique [J]. Journal of Optoelectronics · Laser, 2014, 25(5): 947-953. (in Chinese)
[10] 范松涛. 基于 TDLAS 技术的全量程甲烷检测系统[D]. 北京: 中国科学院大学, 2013.

Fan S T. Full range methane detection system based on TDLAS technology[D]. Beijing: University of Chinese Academy of Sciences, 2013. (in Chinese)
[11] Zhang L W, Pang T, Zhang Z R, et al. A novel compact intrinsic safety full range Methane microprobe sensor using "trans-world" processing method based on near-infrared spectroscopy [J]. Sensors and Actuators B: Chemical, 2021, 334: 129680. doi:  https://doi.org/10.1016/j.snb.2021.129680
[12] Chen Hao, Ju Yu, Han Li, et al. Algorithms for calculating the concentration of gas mixture containting different background gases in TDLAS technology [J]. Spectroscopy and Spectral Analysis, 2020, 40(10): 3015-3020. (in Chinese)
[13] Li Liucheng, Duo Liping, Zhou Dongjian, et al. Measurements of gas temperature in HBr chemical lasers by TDLAS technique [J]. Infrared and Laser Engineering, 2019, 48(8): 0805011. (in Chinese) doi:  10.3788/IRLA201948.0805011
[14] Cooper D E, Warren R E. Frequency modulation spectroscopy with lead-salt diode lasers: A comparison of single-tone and two-tone techniques [J]. Applied Optics, 1987, 26(17): 3726-3732. doi:  10.1364/AO.26.003726
[15] Wang G S, Mei J X, Tian X, et al. Laser frequency locking and intensity normalization in wavelength modulation spectroscopy for sensitive gas sensing [J]. Optics Express, 2019, 27(4): 4878-4885. doi:  10.1364/OE.27.004878
[16] Zhang Lewen, Sun Pengshuai, Liu Xu, et al. Simultaneous measurement of atmospheric multi-component (CO, N2O, and H2O) based on single quantum cascaded laser [J]. Acta Optica Sinica, 2022, 42(4): 0430002. (in Chinese)
[17] Liu K, Lei W, Tu T, et al. Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell [J]. Sensors and Actuators B: Chemical, 2015, 220: 1000-1005. doi:  https://doi.org/10.1016/j.snb.2015.05.136