[1] Marieb E N, Hoehn K N. Human Anatomy & Physiology [M]. 11th ed. London: Pearson, 2018.
[2] Geng J. Three-dimensional display technologies [J]. Advances in Optics and Photonics, 2013, 5(4): 456-535. doi:  10.1364/AOP.5.000456
[3] 5G unlocks a world of opportunities [R/OL]. [2022-01-14].https://www.huawei.com/us/technology-insights/industry-insights/outlook/mobile-broadband/insights-reports/5 g-unlocks-a-world-of-opportunities.
[4] Grand View Research. 3D display market size & share trends analysis report [DB/OL].[2018-02-07]. https://www.grandviewresearch.com/industry-analysis/3 d-display-market.
[5] Blundell B, Schwarz A. Volumetric Three Dimensional Display System [M]. New York: Wiley-IEEE Press, 1999.
[6] Okoshi T. Three-dimensional Imaging Techniques [M]. New York: Academic Press, 1976.
[7] Xu B, Wu Q, Bao Y, et al. Time-multiplexed stereoscopic display with a quantum dot-polymer scanning backlight [J]. Applied Optics, 2019, 58(16): 4526-4532. doi:  10.1364/AO.58.004526
[8] North T, Wagner M, Bourquin S, et al. Compact and high-brightness helmet-mounted head-up display system by retinal laser projection [J]. Journal of Display Technology, 2016, 12(9): 982-985. doi:  10.1109/JDT.2016.2522998
[9] Wang Y, Liu W, Meng X, et al. Development of an immersive virtual reality head-mounted display with high performance [J]. Applied Optics, 2016, 55(25): 6969-6977. doi:  10.1364/AO.55.006969
[10] Hiura H, Komine K, Arai J, et al. Measurement of static convergence and accommodation responses to images of integral photography and binocular stereoscopy [J]. Optics Express, 2017, 25(4): 3454-3468. doi:  10.1364/OE.25.003454
[11] Zhuang Z, Zhang L, Surman P, et al. Addressable spatial light modulators for eye-tracking autostereoscopic three-dimensional display using a scanning laser [J]. Applied Optics, 2018, 57(16): 4457-4466. doi:  10.1364/AO.57.004457
[12] Meng Y, Lyu Y, Chen L L, et al. Motion parallax and lossless resolution autostereoscopic 3 D display based on a binocular viewpoint tracking liquid crystal dynamic grating adaptive screen [J]. Optics Express, 2021, 29(22): 35456-35473. doi:  10.1364/OE.439111
[13] Lin Y, Liu X, Liu X, et al. Three-dimensional volumetric display system utilizing a rotating two-dimensional LED array [J]. Acta Optica Sinica, 2003, 23(10): 1158-1162. (in Chinese)
[14] Lu H, Zhang J, Song Z, et al. Submillisecond-response light shutter for solid-state volumetric 3 D display based on polymer-stabilized cholesteric texture [J]. Journal of Display Technology, 2014, 19(5): 396-400.
[15] Gong D, Wang C, Wang X, et al. Static volumetric three-dimensional display based on an electric-field-controlled two-dimensional optical beam scanner [J]. Applied Optics, 2019, 58(26): 7067-7072. doi:  10.1364/AO.58.007067
[16] Kumagai K, Yamaguchi I, Hayasaki Y. Three-dimensionally structured voxels for volumetric display [J]. Optics Letters, 2018, 43(14): 3341-3344. doi:  10.1364/OL.43.003341
[17] Tian F, Wang H, Fang Y, et al. A swept volume display system using a planetary gear structure based on parallel moving [J]. Journal of Display Technology, 2012, 8(8): 457-463. doi:  10.1109/JDT.2012.2196790
[18] Xie W, Wang Y, Deng H, et al. Viewing angle-enhanced integral imaging system using three lens arrays [J]. Chinese Optics Letters, 2014, 12(1): 011101. doi:  10.3788/COL201412.011101
[19] Ren H, Xing Y, Zhang H L, et al. 2D/3D mixed display based on integral imaging and a switchable diffuser element [J]. Applied Optics, 2019, 58(34): G276-G281. doi:  10.1364/AO.58.00G276
[20] Zhang H -L, Deng H, Ren H, et al. Method to eliminate pseudoscopic issue in an integral imaging 3 D display by using a transmissive mirror device and light filter [J]. Optics Letters, 2020, 45(2): 351-354. doi:  10.1364/OL.45.000351
[21] Yang L, Sang X, Yu X, et al. A crosstalk-suppressed dense multi-view light-field display based on real-time light-field pickup and reconstruction [J]. Optics Express, 2018, 26(26): 34412-34427. doi:  10.1364/OE.26.034412
[22] Chen D, Sang X, Yu X, et al. Performance improvement of compressive light field display with the viewing-position-dependent weight distribution [J]. Optics Express, 2016, 24(26): 29781-29793. doi:  10.1364/OE.24.029781
[23] Adelson E H, Bergen J R. The Plenoptic Function and the Elements of Early Vision [M]// Landry M. Movshon J A. Computational models of Visual Processing. Cambridge: MIT Press, 1991: 3-20.
[24] Wenger A, Gardner A, Tchou C, et al. Performance relighting and reflectance transformation with time-multiplexed illumination [C]//Special Interest Group on Computer Graphics and Interactive Techniques Conference (SIGGRAPH), 2005, 24: 756-764.
[25] Ma Q, Cao L, He Z, et al. Progress of three-dimensional light-field display [J]. Chinese Optics Letters, 2019, 17(11): 111001. doi:  10.3788/COL201917.111001
[26] Huang H, Hua H. Systematic characterization and optimization of 3D light field displays [J]. Optics Express, 2017, 25(16): 18508-18525. doi:  10.1364/OE.25.018508
[27] Xu M, Hua H. Systematic method for modeling and characterizing multilayer light field displays [J]. Optics Express, 2020, 28(2): 1014-1036. doi:  10.1364/OE.381047
[28] Goodman J P. Introduction to Fourier Optics [M]. 4th ed. New York: W. H. Freeman & Company, 2017.
[29] Pi D, Liu J, Kang R, et al. Reducing the memory usage of computer-generated hologram calculation using accurate high-compressed look-up-table method in color 3D holographic display [J]. Optics Express, 2019, 27(20): 28410-28422. doi:  10.1364/OE.27.028410
[30] Wang Z, Lv G Q, Feng Q B, et al. Resolution priority holographic stereogram based on integral imaging with enhanced depth range [J]. Optics Express, 2019, 27(3): 2689-2702. doi:  10.1364/OE.27.002689
[31] Wang Z, Zhu L M, Zhang X, et al. Computer-generated photorealistic hologram using ray-wavefront conversion based on the additive compressive light field approach [J]. Optics Letters, 2020, 45(3): 615-618. doi:  10.1364/OL.383508
[32] Chang C, Cui W, Gao L. Holographic multiplane near-eye display based on amplitude-only wavefront modulation [J]. Optics Express, 2019, 27(21): 30960-30970. doi:  10.1364/OE.27.030960
[33] Sui X, He Z, Jin G, et al. Band-limited double-phase method for enhancing image sharpness in complex modulated computer-generated holograms [J]. Optics Express, 2021, 29(2): 2597-2612. doi:  10.1364/OE.414299
[34] Sui X, He Z, Zhang H, et al. Spatiotemporal double-phase hologram for complex-amplitude holographic displays [J]. Chinese Optics Letters, 2020, 18(10): 100901. doi:  10.3788/COL202018.100901
[35] Liu K, He Z, Cao L. Pattern-adaptive error diffusion algorithm for improved phase-only hologram generation [J]. Chinese Optics Letters, 2021, 19(5): 050501. doi:  10.3788/COL202119.050501
[36] Li C, Cao L, Wang Z, et al. Hybrid polarization-angle multiplexing for volume holography in gold nanoparticle-doped photopolymer [J]. Optics Letters, 2014, 39(24): 6891-6894. doi:  10.1364/OL.39.006891
[37] Lee J S, Kim Y K, et al. See-through display combined with holographic display and Maxwellian display using switchable holographic optical element based on liquid lens [J]. Optics Express, 2018, 26(15): 19341-19355. doi:  10.1364/OE.26.019341
[38] Lohmann A W. On Moiré fringes as Fourier test objects [J]. Applied Optics, 1966, 5(4): 669-670. doi:  10.1364/AO.5.000669
[39] Brown B R, Lohmann A W. Complex spatial filtering with binary masks [J]. Applied Optics, 1966, 5(6): 967-969. doi:  10.1364/AO.5.000967
[40] Waters J P. Holographic image synthesis utilizing theoretical methods [J]. Applied Physics Letters, 1967, 9(11): 405-407.
[41] Lesem L B, Hirsch P M, Jordan J A. The kinoform: a new wavefront reconstruction device [J]. IBM Journal of Research and Development, 1969, 13(2): 150-155. doi:  10.1147/rd.132.0150
[42] Lee W H. Sampled Fourier transform hologram generated by computer [J]. Applied Optics, 1970, 9(3): 639-643. doi:  10.1364/AO.9.000639
[43] Leseberg D, Frère C. Computer-generated holograms of 3D objects composed of tilted planar segments [J]. Applied Optics, 1988, 27(14): 3020-3024. doi:  10.1364/AO.27.003020
[44] Yamaguchi M, Endoh H, Honda T, et al. High-quality recording of a full-parallax holographic stereogram with a digital diffuser [J]. Optics Letters, 1994, 19(2): 135-137. doi:  10.1364/OL.19.000135
[45] Yoshikawa H, Kameyama H. Integral holography [C]//Proceeding of SPIE, 1995, 2406: 226-234.
[46] Benton S A. Synthetic holography [C]//Conference on Lasers and Electro-Optics, 1989, 11: JA1.
[47] Hilaire P S, Benton S A, Lucente M. Synthetic aperture holography: a novel approach to three-dimensional displays [J]. Journal of the Optical Society of America A, 1992, 9(11): 1969-1977. doi:  10.1364/JOSAA.9.001969
[48] Lucente M. Interactive computation of holograms using a look-up table [J]. Journal of Electronic Imaging, 1993, 2(1): 28-34. doi:  10.1117/12.133376
[49] Nishi S, Shiba K, Mori K, et al. Fast calculation of computer-generated Fresnel hologram utilizing distributed parallel processing and array operation [J]. Optical Review, 2005, 12(4): 287-292. doi:  10.1007/s10043-005-0287-4
[50] Ahrenberg L, Benzie P, Magnor M, et al. Computer generated holography using parallel commodity graphics hardware [J]. Optics Express, 2006, 14(17): 7636-7641. doi:  10.1364/OE.14.007636
[51] Huebschman M L, Munjuluri B, Garner H R. Dynamic holographic 3-D image projection [J]. Optics Express, 2003, 11(5): 437-445. doi:  10.1364/OE.11.000437
[52] Guo C S, Rong Z Y, Wang H T, et al. Phase-shifting with computer-generated holograms written on a spatial light modulator [J]. Applied Optics, 2003, 42(35): 6975-6979. doi:  10.1364/AO.42.006975
[53] Matsushima K, Schimmel H, Wyrowski F. Fast calculation method for optical diffraction on tilted planes by use of the angular spectrum of plane waves [J]. Journal of the Optical Society of America A, 2003, 20(9): 1755-1762. doi:  10.1364/JOSAA.20.001755
[54] Matsushima K, Nakahara S. Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method [J]. Applied Optics, 2003, 48(34): H54-H63.
[55] Ahrenberg L, Benzie P, Magnor M, et al. Computer generated holograms from three dimensional meshes using an analytic light transport model [J]. Applied Optics, 2008, 47(10): 1567-1574. doi:  10.1364/AO.47.001567
[56] Wakunami K, Yamaguchi M. Calculation for computer generated hologram using ray-sampling plane [J]. Optics Express, 2011, 19(10): 9086-9101. doi:  10.1364/OE.19.009086
[57] Kurihara T, Takaki Y. Shading of a computer-generated hologram by zone plate modulation [J]. Optics Express, 2012, 20(4): 3529-3540. doi:  10.1364/OE.20.003529
[58] Ichikawa T, Yamaguchi K, Sakamoto Y. Realistic expression for full-parallax computer-generated holograms with the ray-tracing method [J]. Applied Optics, 2013, 52(1): A201-A209. doi:  10.1364/AO.52.00A201
[59] Zhao Y, Cao L, Zhang H, et al. Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method [J]. Optics Express, 2015, 23(20): 25440-25449. doi:  10.1364/OE.23.025440
[60] Smalley D E, Smithwick Q Y J, Bove V M, et al. Anisotropic leaky-mode modulator for holographic video displays [J]. Nature, 2013, 498: 313-317. doi:  10.1038/nature12217
[61] Inoue T, Takaki Y. Table screen 360-degree holographic display using circular viewing-zone scanning [J]. Optics Express, 2015, 23(5): 6533-6542. doi:  10.1364/OE.23.006533
[62] Horisaki R, Takagi R, Tanida J. Deep-learning-generated holography [J]. Applied Optics, 2018, 57(14): 3859-3863. doi:  10.1364/AO.57.003859
[63] Blinder D. Direct calculation of computer-generated holograms in sparse bases [J]. Optics Express, 2019, 27(16): 23124-23137. doi:  10.1364/OE.27.023124
[64] Cencillo-Abad P, Plum E, Rogers E T F, et al. Spatial optical phase-modulating metadevice with subwavelength pixelation [J]. Optics Express, 2016, 24(16): 18790-18798. doi:  10.1364/OE.24.018790
[65] Martins A, Li J, da Mota A F, et al. Broadband C-Si metasurfaces with polarization control at visible wavelengths: applications to 3 D stereoscopic holography [J]. Optics Express, 2018, 26(23): 30740-30752. doi:  10.1364/OE.26.030740
[66] Wu J, Fu S, Zhang X, et al. Graphene-oxide/TiO2 nanocomposite films with electron-donors for multicolor holography [J]. Optics Express, 2019, 27(2): 1740-1749. doi:  10.1364/OE.27.001740
[67] Jiang Q, Cao L, Zhang H, et al. Improve the quality of holographic image with complex-amplitude metasurface [J]. Optics Express, 2019, 27(23): 33700-33708. doi:  10.1364/OE.27.033700
[68] Li J, Smithwick Q, Chu D. Scalable coarse integral holographic video display with integrated spatial image tiling [J]. Optics Express, 2020, 28(7): 9899-9912. doi:  10.1364/OE.386675
[69] An J, Won K, Kim Y, et al. Slim-panel holographic video display [J]. Nature Communications, 2020, 11: 5568. doi:  10.1038/s41467-020-19298-4
[70] Shi L, Li B, Kim C, et al. Towards real-time photorealistic 3D holography with deep neural networks [J]. Nature, 2021, 591: 234-239. doi:  10.1038/s41586-020-03152-0
[71] Lohmann A W, Paris D P. Binary Fraunhofer holograms, generated by computer [J]. Applied Optics, 1967, 6(10): 1739-1748. doi:  10.1364/AO.6.001739
[72] Shimobaba T, Ito T. Random phase-free computer-generated hologram [J]. Optics Express, 2015, 23(7): 9549-9554. doi:  10.1364/OE.23.009549
[73] Wyrowski F, Bryngdahl O. Speckle-free reconstruction in digital holography [J]. Journal of the Optical Society of America A, 1989, 6(8): 1171-1174. doi:  10.1364/JOSAA.6.001171
[74] Zea A V, Torroba R. Optimized random phase tiles for non-iterative hologram generation [J]. Applied Optics, 2019, 58(32): 9013-9019. doi:  10.1364/AO.58.009013
[75] Ma H, Liu J, Yang M, et al. Influence of limited random-phase of objects on the image quality of 3 D holographic display [J]. Optics Communications, 2017, 385: 153-159. doi:  10.1016/j.optcom.2016.10.042
[76] Zhao T, Liu J, Duan J, et al. Image quality enhancement via gradient-limited random phase addition in holographic display [J]. Optics Communications, 2019, 442: 84-89. doi:  10.1016/j.optcom.2019.02.026
[77] Nagahama Y, Shimobaba T, Kakue T, et al. Image quality improvement of random phase-free holograms by addressing the cause of ringing artifacts [J]. Applied Optics, 2019, 58(9): 2146-2151. doi:  10.1364/AO.58.002146
[78] Mengu D, Ulusoy E, Urey H. Non-iterative phase hologram computation for low speckle holographic image projection [J]. Optics Express, 2016, 24(5): 4462-4476. doi:  10.1364/OE.24.004462
[79] Cruz M L. Full image reconstruction with reduced speckle noise, from a partially illuminated Fresnel hologram, using a structured random phase [J]. Applied Optics, 2019, 58(8): 1917-1923. doi:  10.1364/AO.58.001917
[80] He Z, Sui X, Zhang H, et al. Frequency-based optimized random phase for computer-generated holographic display [J]. Applied Optics, 2021, 60(4): A145-A154. doi:  10.1364/AO.404934
[81] Gerchberg R W, Saxton W O. A practical algorithm for the determination of phase from image and diffraction plane pictures [J]. Optik, 1971, 35(2): 1-6.
[82] Chen C Y, Deng Q L, Wu P J, et al. Speckle reduction by combination of digital filter and optical suppression in a modified Gerchberg-Saxton algorithm computer-generated hologram [J]. Applied Optics, 2014, 53(27): G163-G168. doi:  10.1364/AO.53.00G163
[83] Deng Q L, Lin B S, Chang H T, et al. MGSA-type computer-generated holography for vision training with head-mounted display [J]. Journal of Display Technology, 2014, 10(6): 433-437. doi:  10.1109/JDT.2013.2276129
[84] Chen C Y, Chang H T, Chang T J, et al. Full-color and less-speckled modified Gerchberg-Saxton algorithm computer-generated hologram floating in a dual-parabolic projection system [J]. Chinese Optics Letters, 2015, 13(11): 110901. doi:  10.3788/COL201513.110901
[85] Liu S C, Chu D. Deep learning for hologram generation [J]. Optics Express, 2021, 29(17): 27373-27395. doi:  10.1364/OE.418803
[86] Kang J W, Park B S, Kim J K, et al. Deep-learning-based hologram generation using a generative model [J]. Applied Optics, 2021, 60(24): 7391-7399. doi:  10.1364/AO.427262
[87] Goi H, Komuro K, Nomura T. Deep-learning-based binary hologram [J]. Applied Optics, 2020, 59(23): 7103-7108. doi:  10.1364/AO.393500
[88] Lee J, Jeong J, Cho J, et al. Deep neural network for multi-depth hologram generation and its training strategy [J]. Optics Express, 2020, 28(18): 27137-27154. doi:  10.1364/OE.402317
[89] Shimobaba T, Blinder D, Makowski M, et al. Dynamic-range compression scheme for digital hologram using a deep neural network [J]. Optics Letters, 2019, 44(12): 3038-3041.
[90] Wu J, Liu K, Sui X, et al. High-speed computer-generated holography using an autoencoder-based deep neural network [J]. Optics Letters, 2021, 46(12): 2908-2011. doi:  10.1364/OL.425485
[91] Yao K, Wang J, Liu X, et al. Analysis of a holographic laser adaptive optics system using a deformable mirror [J]. Applied Optics, 2017, 56(23): 6639-6648. doi:  10.1364/AO.56.006639
[92] Andersen G, Austin P G, Gaddipati R, et al. Fast, compact, autonomous holographic adaptive optics [J]. Optics Express, 2014, 22(8): 9432-9441. doi:  10.1364/OE.22.009432
[93] Neil M A, Booth M J, Wilson T. Closed-loop aberration correction by use of a modal Zernike wave-front sensor [J]. Optics Express, 2000, 25(15): 1083-1085.
[94] Otón J, Ambs P, Millán M S, et al. Multipoint phase calibration for improved compensation of inherent wavefront distortion in parallel aligned liquid crystal on silicon displays [J]. Applied Optics, 2007, 46(23): 5667-5679. doi:  10.1364/AO.46.005667
[95] Yeom H J, Kim H J, Kim S B, et al. 3 D holographic head mounted display using holographic optical elements with astigmatism aberration compensation [J]. Optics Express, 2015, 23(25): 32025-32034. doi:  10.1364/OE.23.032025
[96] Kaczorowski A, Gordon G S, Wilkinson T D. Adaptive, spatially-varying aberration correction for real-time holographic projectors [J]. Optics Express, 2016, 24(14): 15742-15756. doi:  10.1364/OE.24.015742
[97] Kaczorowski A, Gordon G S, Palani A, et al. Optimization-based adaptive optical correction for holographic projectors [J]. Journal of Display Technology, 2015, 11(7): 596-603. doi:  10.1109/JDT.2015.2418436
[98] Haist T, Peter A, Osten W. Holographic projection with field-dependent aberration correction [J]. Optics Express, 2015, 23(5): 5590-5595. doi:  10.1364/OE.23.005590
[99] He Z, Sui X, Jin G, et al. Distortion-correction method based on angular spectrum algorithm for holographic display [J]. IEEE Transactions on Industrial Informatics, 2019, 15(11): 6162-6169. doi:  10.1109/TII.2019.2906642
[100] Silva R. 3D TV is dead - what you need to know [R/OL].[2013-01-17].https://www.lifewire.com/why-3 d-tv-died-4126776.
[101] Chen R H Y, Wilkinson T D. Computer generated hologram from point cloud using graphics processor [J]. Applied Optics, 2009, 48(36): 6841-6850. doi:  10.1364/AO.48.006841
[102] Su P, Cao W, Ma J, et al. Fast computer-generated hologram generation method for three-dimensional point cloud model [J]. Journal of Display Technology, 2016, 12(12): 1688-1694. doi:  10.1109/JDT.2016.2553440
[103] Chen J S, Chu D P. Improved layer-based method for rapid hologram generation and real-time interactive holographic display applications [J]. Optics Express, 2015, 23(14): 18143-18155. doi:  10.1364/OE.23.018143
[104] Jia J, Si J, Chu D. Fast two-step layer-based method for computer generated hologram using sub-sparse 2 D fast Fourier transform [J]. Optics Express, 2018, 26(13): 17487-17497. doi:  10.1364/OE.26.017487
[105] Pan Y, Wang Y, Liu J, et al. Fast polygon-based method for calculating computer-generated holograms in three-dimensional display [J]. Applied Optics, 2013, 52(1): A290-A299. doi:  10.1364/AO.52.00A290
[106] Liu J P, Liao H K. Fast occlusion processing for a polygon-based computer-generated hologram using the slice-by-slice silhouette method [J]. Applied Optics, 2018, 57(1): A215-A221. doi:  10.1364/AO.57.00A215
[107] Yamaguchi M, Wakunami K, Inaniwa M. Computer generated hologram from full-parallax 3 D image data captured by scanning vertical camera array [J]. Chinese Optics Letters, 2014, 12(6): 060018. doi:  10.3788/COL201412.060018
[108] Yanagihara H, Kakue T, Yamamoto Y, et al. Real-time three-dimensional video reconstruction of real scenes with deep depth using electro-holographic display system [J]. Optics Express, 2019, 27(11): 15662-15678. doi:  10.1364/OE.27.015662
[109] Ichihashi Y, Oi R, Senoh T, et al. Real-time capture and reconstruction system with multiple GPUs for a 3 D live scene by a generation from 4 K IP images to 8 K holograms [J]. Optics Express, 2012, 20(19): 21645-21655. doi:  10.1364/OE.20.021645
[110] Wu J, Chen H, Liu X, et al. Unsupervised texture reconstruction method using bidirectional similarity function for 3-D measurements [J]. Optics Communications, 2019, 439: 85-93. doi:  10.1016/j.optcom.2019.01.051
[111] Yamaguchi M. Light-field and holographic three-dimensional displays [J]. Journal of Optics Society of America A, 2016, 33(12): 2348-2364. doi:  10.1364/JOSAA.33.002348
[112] Igarashi S, Nakamura T, Matsushima K, et al. Efficient tiled calculation of over-10-gigapixel holograms using ray-wavefront conversion [J]. Optics Express, 2018, 26(8): 10773-10786. doi:  10.1364/OE.26.010773
[113] Tsai S F, Cheng C C, Li C T, et al. A real-time 1080 p 2 D-to-3 D video conversion system [J]. IEEE Transactions on Consumer Electronics, 2011, 57(2): 915-922. doi:  10.1109/TCE.2011.5955240
[114] Cheng C C, Li C T, Chen L G. A novel 2D-to-3D conversion system using edge information [J]. IEEE Transactions on Consumer Electronics, 2010, 56(3): 1739-1745. doi:  10.1109/TCE.2010.5606320
[115] Lai Y K, Lai Y F, Chen Y C. An effective hybrid depth-generation algorithm for 2D-to-3D conversion in 3 D displays [J]. Journal of Display Technology, 2013, 9(3): 154-161. doi:  10.1109/JDT.2012.2224637
[116] Zhang Z, Yin S, Liu L, et al. A real-time time-consistent 2D-to-3D video conversion system using color histogram [J]. IEEE Transactions on Consumer Electronics, 2015, 61(4): 524-530. doi:  10.1109/TCE.2015.7389808
[117] Gil J, Kim M. Motion depth generation using MHI for 2D-to-3D video conversion [J]. Electronics Letters, 2017, 53(23): 1520-1522. doi:  10.1049/el.2017.1505
[118] He Z, Sui X, Cao L. Holographic 3D display using depth maps generated by 2 D-to-3 D rendering approach [J]. Applied Sciences, 2021, 11(21): 9889. doi:  10.3390/app11219889
[119] Huang W, Cao X, Lu K, et al. Toward naturalistic 2D-to-3D conversion [J]. IEEE Transactions on Image Processing, 2015, 24(2): 724-733. doi:  10.1109/TIP.2014.2385474
[120] Konrad J, Wang M, Ishwar P, et al. Learning-based, automatic 2D-to-3D image and video conversion [J]. IEEE Transactions on Image Processing, 2013, 22(9): 3485-3496. doi:  10.1109/TIP.2013.2270375
[121] J L Herrera, C R del-Blanco, N García. A novel 2D to 3D video conversion system based on a machine learning approach [J]. IEEE Transactions on Consumer Electronics, 2016, 62(4): 429-436. doi:  10.1109/TCE.2016.7838096